Developing Component Software
with CORBA®

Version 8.0

Copyright and Trademarks

Developing Component Software with CORBA®
Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and K nowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in al copies and supporting documentation, and that the
name of M.1.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "asis’
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including al implied
warranties of merchantability and fitness. In no event shall M.I.T. beliable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of |CU software obtained from http://source.icu-project.org and which bears the following copyright
and permission natice:

ICU License- ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person abtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission naotice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "ASIS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THISNOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright and Trademarks

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and

registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights

The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt 111, as applicable. Rights reserved under the copyright laws of

the United States.

Address

Telephone

Fax

LispWorks Ltd

St. John's Innovation Centre
Cowley Road

Cambridge

CB4 0WS

England

From North America
877 759 8839 (toll-free)

From elsawhere;
+44 1223 421860

From North America
617 812 8283

From elsawhere:
+44 870 2206189

www.lispwor ks.com

www.lispworks.com

Contents

Preface 6

1 Common Lisp and CORBA 8

1.1 About CORBA 8

1.2 About the LispWorks ORB 8

1.3 Features of the LispWorks ORB 9
1.4 CORBA examples 9

2 Quick Start Tutorial 10

2.1 A CORBA-based Hello World 10
2.2 Compl ete source code for the Hello World example

3 Setting up the Bank Example 17

3.1 About the bank example 17

3.2 Where to find the example code 17
3.3 Building the bank client and server 17
3.4 Running the server and client 18

4 Writing and Compiling IDL 19
4.1 Designing the IDL 19

4.2 Compiling IDL for a CORBA application 21
4.3 Mapping IDL to Common Lisp 22

5 The Bank Client 24

5.1 Theclient 24

5.2 The client's perspective 24

5.3 Implementing the bank client's GUI 24
5.4 Defining the interfaces 25

6 The Bank Server 32

6.1 The server 32

6.2 Implementing CORBA objects on the server 32

6.3 The server's perspective 34
6.4 Implementing the bank server 34

14

Contents

7 The LispWorks ORB 40

7.1 The CORBA modules 40

7.2 Parsing IDL into stubs and skeletons 40

7.3 Configuring a name service and an interface repository
7.4 Error handling in user code called by the server 41
7.5 Multi-threading 41

7.6 Object URLS 42

7.7 Specifying the port 42

7.8 Specifying the host name in IORs 42

Appendix A: Common Lisp IDL Binding

A.1lIntroduction to IDL 44

A.2 How IDL isused 44

A.3 Mapping summary 44

A.4 Mapping in more detail 45

A.5 Mapping pseudo-objectsto Lisp 60

A.6 The mapping of IDL into Common Lisp servants 61

Index

Preface

Product

Lispworks Ltd's Common Lisp Object Request Broker” (ORB") supports the Common Object Request Broker Architecture
(CORBA®) defined by Object Management Group®, Inc. (OMG").

The LispWorks ORB and supporting tools provide CORBA architecture functionality to Common Lisp programmers,
combining standardized distributed system devel opment with a state-of-the-art dynamic object-oriented language.

Parts
The CORBA components included in The LispWorks ORB are:

1. Severa fadsthat are placed in the library directory, and which may be required into the image:

cor ba- support The client side of the ORB run time system plus the IDL parser.

corba-orb The server side, the actual LispWorks ORB, which loads cor ba- support if it isnot present.
corba-tools Graphical tools.

cor ba Convenience module which simply requires cor ba- or b and cor ba- t ool s.

2. Some example Common Lisp code including:

(exanpl e-edit-file "corbal/ hello-world/")

(exanple-edit-file "corbal bank/")

3. Thismanual.

Audience

This manua isintended for use by application programmers who wish to build CORBA applications using Common Lisp.
The guide assumes that the reader is familiar with both the Common Lisp programming language and with building
distributed applications using CORBA.

Standards compliance

The LispWorks ORB conforms to the CORBA 2.0 specification with some elements of CORBA 2.2, most notably the
Portable Object Adapter (POA).

Further reading

Many resources exist for those who want to learn about CORBA and distributed software development. The OMG maintains
agreat starting point for beginners at:

Preface

http://ww. ong. org/ gettingstarted

(This address may change.)
See dso:

» Related books and magazines like:

Instant CORBA by R. Orfali
Published by John Wiley & Sons, 1997
ISBN 0-471-18333-4.

» And mailing lists like CORBA Development:
cor ba-dev@ andomnal k. com

This list discusses building CORBA-based systems. To subscribe, send email to
cor ba- dev-request @ andomwal k. comwith
subscri be cor ba- dev inthe body of the message.

Viewing example files

This manual sometimes refersto example filesin the LispWorks library viaa Lisp form like this:

(exanple-edit-file "corbal/hello-world/ hello-world-client")

This examplesisalLisp sourcefilein your LispWorks installation under | i b/ 8- 0- 0- 0/ exanpl es/ . You can ssimply
evaluate the given form to view thefile.

Example files contain instructions about how to use them at the start of thefile.

The examplesfiles are in aread-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
towrite afad file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy thefile
elsewhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

1 Common Lisp and CORBA

1.1 About CORBA

Object Management Group, Inc. describe their CORBA architecture as follows:

The Common Object Request Broker Architecture (CORBA), is the Object Management Group's answer to the need
for interoperability among the rapidly proliferating number of hardware and software products available today. Simply
stated, CORBA allows applications to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group (OMG) and defined the Interface
Definition Language (IDL) and the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can interoperate.

The ORB isthe middleware that establishes the client-server relationships between objects. Using an ORB, aclient can
transparently invoke a method on a server object, which can be on the same machine or across a network. The ORB
intercepts the call and is responsible for finding an object that can implement the request, passit the parameters, invoke
its method, and return the results. The client does not have to be aware of where the object islocated, its programming
language, its operating system, or any other system aspects that are not part of an object'sinterface. In so doing, the
ORB provides interoperability between applications on different machines in heterogeneous distributed environments
and seamlessly interconnects multiple object systems.

Infielding typical client/server applications, devel opers use their own design or arecognized standard to define the
protocol to be used between the devices. Protocol definition depends on the implementation language, network
transport and a dozen other factors. ORBs simplify this process. With an ORB, the protocol is defined through the
application interfaces via a single implementation language-independent specification, the IDL. And ORBs provide
flexibility. They let programmers choose the most appropriate operating system, execution environment and even
programming language to use for each component of a system under construction. More importantly, they alow the
integration of existing components. In an ORB-based solution, devel opers simply model the legacy component using
the same IDL they use for creating new objects, then write "wrapper” code that trandates between the standardized bus
and the legacy interfaces.

CORBA isasignal step on the road to object-oriented standardization and interoperability. With CORBA, usersgain
access to information transparently, without them having to know what software or hardware platform it resides on or
whereit islocated on an enterprise's network. The communications heart of object-oriented systems, CORBA brings
true interoperability to today's computing environment.

At the time of writing, the text above was available at:

http://ww. ong. or g/ cor ba/ what i scor ba. ht m

It has been reproduced with permission.

1.2 About the LispWorks ORB

Lispworks Ltd has written a CORBA-compliant, native-11OP ORB in Common Lisp.

The LispWorks ORB will let you build and run distributed applicationsin Common Lisp, straight out of the box. When
combined with a database interface, you are able to build three-tier, client-server applications completely in Common Lisp.

1 Common Lisp and CORBA

However, the raison d'etre of CORBA isinteroperability. Hence, the choice of 110P provides immediate interoperation with
any other ORB you may be using. For example, given a Java ORB you could write GUI clientsin AWT that communicate
with servers written in Common Lisp. Conversely, given a C++ ORB you can build CAPI clientsthat talk to C++ servers.

The advantages of building an ORB in Common Lisp (apart from proving that Common Lisp can tackle another complex
domain) are:

» ORB-vendor independence — The LispWorks ORB can be married to any existing ORB infrastructure, or introduced first
without affecting later ORB procurement decisions.

 "Batteriesincluded” — No need to purchase a separate ORB to get afull system. The LispWorks ORB provides "instant
CORBA" to get distributed Common Lisp applications up and running without additional procurement or installation.

» Lower impedance mismatch — No heed to trampoline from Common Lisp to [1OP via another language binding or viaa
non—Common Lisp IIOP engine API.

» CORBA expertise— A deeper understanding of CORBA inside Lispworks Ltd, which can be shared with our customers
viatechnical support.

» CORBA customization — Lispworks Ltd likes to offer ahigh level of customization support and consulting to both
internal and external customers which it could not do with athird-party product written in a more primitive language.
This also means faster fixes for basic bugs.

* 100% pure Common Lisp — Providing users with enhanced debugging and interaction facilities availablein a
homogeneous implementation model.

1.3 Features of the LispWorks ORB

The following features are supported:

» CORBA 2.0 with parts of CORBA 2.2 (notably the POA).

Internet Inter-ORB Protocol (I110P) 1.0 (GIOP 1.0).

Portable Object Adapter (POA).
» Dynamic Invocation Interface (DI1).
» Dynamic Skeleton Interface (DSI).

» Common Lisp Language Binding.

1.4 CORBA examples

The LispWorks ORB includes two example applications to help you start writing client/server applicationsin CORBA. We
study these applications later in this guide.

Hello World A client/server implementation of the standard Hello World application.
Bank A three-tier client/server implementation of a banking application.

This manual walks you through these examples, which are ready to build and run straight out of the box.

2 Quick Start Tutorial

In this chapter, we develop avery basic CORBA application, designed to demonstrate some of the key concepts for using
Common Lisp for distributed objects.

The chapter aims to show you the sort of coding involved in using CORBA with Common Lisp, and to get a client/server
application up and running quickly. 1t is not concerned so much with explaining how things work. Subsequent chapters go
into more detail, using a deeper example, and explaining the approach we have taken to implementing the CORBA
architecture for Common Lisp.

In this example application, a client program asks a server program for a string and printsit to standard output. This chapter
is going to take you through the basic steps needed to create the application.

2.1 A CORBA-based Hello World

This chapter's example is an implementation of the standard Hello World application, using Common Lisp and CORBA. In
this version of Hello World, a client application asks a server application for a string. When the client receives the string, it
printsit to the standard output, and then exits.

We will take these basic steps to create the application:

1. Define the interface.

We define the interface to the server using OMG's Interface Definition Language (IDL).
2. Implement the client.
3. Implement the server.
4. Build and test the application.

The complete Hello World application is here:

(example-edit-file "corba/hello-world/")

For instance, in a default 64-bit LispWorks 8.0 installation on Microsoft Windows, the location is
C:\ Program Fi | es\ Li spWor ks\|i b\ 8-0-0-0\ exanpl es\ corba\ hel | o-wor | d\.

2.1.1 Defining the interface

We first need to define the interface of the Hello World server object. The client and server will communicate across this
interface. The interface is defined using IDL in asingle file that must have the extension . i dI .

1. Create afilecalled hel | o-wor | d. i dl .

2. Enter the IDL declaration below into the hel | o-wor | d. i dl file.

nmodul e Hel l oWorl d {
interface world {

string hello();
H

H

10

2 Quick Start Tutorial

ThisIDL declaration says that there are CORBA objects of akind called wor | d, and that there is an operation called hel | o
onwor | d objects that takes no arguments and returns a string. Serversimplement wor | d, and clients call hel | o on
instances of wor | d.

Now that we have written the IDL, we can run the IDL parser over it to produce stub and skeleton code for the client and
server parts of the application.

2.1.2 Generating the stub and skeleton code from IDL

We need the IDL parser to parse the IDL to generate appropriate stubs and skeletons. We do this by including the IDL filein
the defsystem that defines the code we are writing. For Hello World, the relevant defsystem is:

(defsystem hel | o-worl d- cor ba-obj ect ()
:menbers (
("hello-world" :type :idl-file)))

The defsystem utility has been extended to correctly handle afile of typei dI -fi | e. Inthiscase, the fad corresponding to
the IDL file contains the compiled stubs and skeletons for the given IDL and is generated when we compile the system.
To create adefsystem file for the Hello World application:
1. Create adefsystem file called def sys. | i sp.
2. Enter thefollowing Lisp code into thedef sys. | i sp file:
(i n-package "CL-USER")
(require "corba-orb")
(defsystem hel | o-worl d- cor ba-obj ect ()
:menbers (
("hello-world" :type :idl-file)
))

:rules ((:in-order-to :conpile :all
(:requires (:load :previous)))))

3. Save and close the defsystem file.

When it comes time to run the application, stubs and skeletons will be generated.

2.1.3 Defining utilities for sharing an object reference

Now we will define some utilities for communicating an object reference from the server to the client by converting the object
reference into a string using ORB-supplied functions and writing it to a shared file. The client can then read the string from
the shared file and convert it back into an object reference. Note that areal application would probably use a higher level
service such as a Name Service for passing object references between applications.

1. Create afilecalled shared. | i sp.
2. Enter the following Common Lisp code into theshar ed. | i sp file:
(i n-package "CL- USER")
(def parameter *hello-world-ior-file*
#+mswi ndows "c:/tenp/hello.ior"

#- mswi ndows "/tnp/hello.ior")

(defun object-to-file (orb object)
(with-open-file (st *hello-world-ior-file* :direction :output

11

2 Quick Start Tutorial

;i f-exists :supersede)
(prinl (op:object_to_string orb object) st)))

(defun file-to-object (orb)

(with-open-file (st *hello-world-ior-file*)
(op:string_to_object orb (read st))))

This code does the following:

e obj ect-to-fil e opensthe shared file and usesthe op: obj ect _t o_st ri ng function to convert the object
reference into a string, which is then written into the file.

e file-to-object performstheinverse operation: it reads the string from the file and uses
op: string_to_object toconvert the string back into a client-side proxy object.

3. Saveand closetheshared. | i sp file.

4. Add shar ed. | i sp to the defsystem by adding one line of codeto the def sys. | i sp file, which should then look like
this:

(i n-package "CL-USER")
(require "corba-orb")
(def system hel | o-wor | d- cor ba- obj ect ()
s menbers (
("hello-world" :type :idl-file)

"shar ed"

))
irules ((:in-order-to :conpile :all
(:requires (:load :previous)))))

2.1.4 Implementing the client

Now we will implement the client side of the Hello World application. We create afilehel | o-worl d-client.lisp and
add it to the defsystem. (You can implement this as you wish, but here is one possible implementation.)

1. Create afilecaled hel | o-wor |l d-client.lisp.

2. Enter the following Common Lisp code into the
hel | o-worl d-client.lispfile

(i n-package "CL-USER")
(defun run-client ()
(let ((orb (op:orb_init nil "LispWrks ORB")))

(let ((world (op:narrow 'HelloWorld:world (file-to-object

orb))))
(format t "~S~% (op:hello world)))))

This code does the following:
» Getsaworld object from somewhere.
* Invokesop: hel | o on the object to get a string.

» Writes out the string and a new line to the standard output stream.

The elided details are not important at this stage, they involve getting an object reference from somewhere. In the full
source at the end of this chapter (2.2 Complete source code for the Hello Wor ld example) you can see that a shared file
is used to pass a stringified object reference.

12

2 Quick Start Tutorial

3. Saveand closethehel | o-worl d-client.lispfile

4. Add hel | o-wor | d-cl i ent to the defsystem by adding one line of codeto the def sys. I i sp file, which should then
look like this:

(i n-package "CL-USER")
(require "corba-orb")

(defsystem hel | o-worl d- cor ba-obj ect ()

:menbers (
("hello-world" :type :idl-file)
"shared"
"hel l o-worl d-client"
))

crules ((:in-order-to :conpile :all
(:requires (:load :previous)))))

2.1.5 Implementing the server

Implementing the server is also easy. We create afile
hel | o-wor| d-server.lisp.

In the server the main function is less interesting because it is concerned with the administrative details of writing out a
stringified form of the object reference into the shared file and initializing the server. The actual core of the application
implementation is:

(defclass world-inplenentation (HelloWrld:world-servant) ())

(corba: define-nethod op: hello ((self world-inplenmentation))
(declare (ignore self))
"Hello World!")

This subclasses a special generated class on the server side called a servant, and then implements a method on op: hel | o
that actually returns the desired string.

1. Create afilecalled hel | o-wor | d-server.lisp.

2. Enter the following codeinto hel | o-wor | d- server.|isp:

(i n-package "CL- USER")
(defclass worl d-inplenentation (HelloWwrld:world-servant) ())

(corba: defi ne-nmet hod op: hello ((self world-inplementation))
(declare (ignore self))
"Hello World!")

(defun server-startup ()
(let* ((orb (op:orb_init nil "LispWrks ORB"))
(poa (op:resolve_initial _references orb "Root POA"))
(i npl (make-instance 'world-inplenmentation))
(world (op:narrow 'Hell owrld: world
(op:servant _to_reference poa inpl))))
(object-to-file orb world)
(let ((manager (op:the_poamanager poa)))
(op:activate nanager))))

3. Add hel | o- wor | d- ser ver to the defsystem by adding one line of code to the def sys. | i sp file, which should then
look like this:

13

2 Quick Start Tutorial

(i n-package "CL- USER")
(require "corba-orb")

(defsystem hel | o-worl d- cor ba-obj ect ()
:menbers (
("hello-world" :type :idl-file)
"shar ed"
"hel | o-worl d-server"
"hell o-world-client”
)
:rules ((:in-order-to :conpile :all
(:requires (:load :previous)))))

2.1.6 Building and testing the application

To build and test this distributed Hello World application, you must copy the rest of the source code from 2.2 Complete
sour ce code for the Hello World example into the respective files. The code can also be found in the cor ba/ hel | o-wor 1 d
subdirectory of the standard examples directory.

After supplementing your files with the complete source code, perform the following stepsin the Listener to run the example:

1. Load the defsystem file by entering:

(l oad (exanple-file "corbal/hello-worl d/defsys"))

(conpi | e-syst em "HELLO WORLD- CORBA- OBJECT"
:t-dir (get-tenp-directory)
:load t)

Now, you can run the application to test that it works.

2. If you are using LispWorks on a UNIX platform and not running with multiprocessing enabled, then call:
(nmp:initialize-multiprocessing)

3. You need to run the server first so that it is waiting and ready to receive calls from the client.

Enter the command:

(cl-user::server-startup)
4. You can then run the client using:
(cl-user::run-client)
Note that you do not have to be running the client and the server in the same Lisp image (although you can if desired). In the
simple example we have just implemented, they must be running on the same machine (to allow the object reference to be

shared using a single file), but we have true location transparency in the way the client can be written with no regard for the
location of the server process.

2.2 Complete source code for the Hello World example

The complete source code for the Hello World application isincluded here for your convenience. It can also be found in the
cor ba/ hel | o-wor | d subdirectory of the standard examples directory.

14

2 Quick Start Tutorial

2.2.1 The complete interface source code

The complete code for the Hello World interface (the hel | o-wor | d. i dI file), writtenin IDL, is:

nmodul e Hel l oWorl d {
interface world {
string hello();
b
b

2.2.2 The complete defsystem source code

The complete code for the Hello World defsystem (the def sys. | i sp filg) is:

(i n-package "CL-USER")
(require "corba-orb")

(defsystem hel | o-worl d- cor ba-obj ect ()
:menbers (
("hello-world" :type :idl-file)
"shar ed"
"hel | o-worl d-server"
"hell o-worl d-client”

)
:rules ((:in-order-to :conpile :all
(:requires (:load :previous)))))

2.2.3 The complete source code for the file transfer of the IOR
The complete code for the Interoperable Object Reference (10R) file transfer (theshar ed. | i sp file) is:
(i n-package "CL- USER")

(def parameter *hello-world-ior-file*
#+mswi ndows "c:/tenp/hello.ior"
#- mswi ndows "/tnp/ hello.ior")

(defun object-to-file (orb object)
(with-open-file (st *hello-world-ior-file* :direction :output
tif-exists :supersede)
(prinl (op:object_to_string orb object) st)))

(defun file-to-object (orb)

(with-open-file (st *hello-world-ior-file¥)
(op:string_to_object orb (read st))))

2.2.4 The complete Hello World client source code
The complete code for the Hello World client (thehel | o-worl d-client.lispfile)is:
(i n-package "CL-USER")
(defun run-client ()
(let ((orb (op:orb_init nil "LispWwrks ORB")))

(let ((world (op:narrow 'HelloWwrld:world (file-to-object

orb))))
(format t "~S~% (op:hello world)))))

15

2 Quick Start Tutorial

2.2.5 The complete Hello World server source code

The complete code for the Hello World server (thehel | o-wor | d-server. i sp filg) is:

(i n-package "CL-USER")
(defclass world-inplenentation (HelloWrld:world-servant) ())

(corba: defi ne-nmet hod op: hello ((self world-inplenmentation))
(declare (ignore self))
"Hello World!")

(defun server-startup ()
(let* ((orb (op:orb_init nil "LispWrks ORB"))
(poa (op:resolve_initial _references orb "Root POA"))
(inpl (make-instance 'world-inplenmentation))
(world (op:narrow ' Hel |l oWrld: world
(op:servant _to_reference poa inpl))))
(object-to-file orb world)
(let ((manager (op:the_poamanager poa)))
(op: activate nanager))))

16

3 Setting up the Bank Example

Chapters 3-6 guide you through the development of a more complex client-server application using The LispWorks ORB.
This example application illustrates how to implement and use CORBA objectsin Common Lisp.

3.1 About the bank example

The example described in this tutorial isasimple simulation of a bank. The architecture of the bank is composed of three
components:

» A database that provides persistent storage for accounts managed by the bank. (Thisis simulated in the following code,
but is easily replaced by areal database backend.)

» A CORBA server that represents the bank and provides an object-oriented interface to its accounts.
* A CORBA client that provides a graphical user interface to the bank.

The server provides a single CORBA object that represents the bank. This object manages a collection of CORBA objects
that represent customer accounts. The bank has operations for opening and closing accounts, and for retrieving existing
accounts from the database. In turn, accounts support operations for querying and updating their balance.

Theclient initially contacts the server by obtaining a reference to the bank object from The LispWorks ORB. It then presents
the user with agraphical interface to the bank.

In response to user requests, the interface invokes operations on the bank, obtaining further references to accounts created on
the server. The client manages separate graphical objects for the bank and each of the accounts that are active in the server.

The user interface isimplemented using the LispWorks CAPI library. Note that this application isatypical example of athree
-tier architecture comprising a database access layer, a business logic layer, and a user interface layer.

3.2 Where to find the example code
The bank example code developed in thistutorial can be found in LispWorksinstallation folder, under:
l'i b/ 8-0-0-0/ exanpl es/ cor ba
Thisfolder has several subfolders.
* bank, which contains the IDL that defines the CORBA interface to the server (thefile bank. i dl).

* bank/ cl i ent, which contains the implementation of the client.

* bank/ ser ver, which contains the implementation of the server.

3.3 Building the bank client and server

We can now build the client and server applications for the demo. The client and server implementations are available in the
respective examples subdirectories.

In your Common Lisp environment:

17

3 Setting up the Bank Example

1. Build the client by running:

(l oad (exanple-file "corbal/bank/client/defsys"))
(conpi | e-system "bank-client"
:t-dir (get-tenp-directory)
:force t
:load t)

2. Build the server by running:

(l oad (exanple-file "corbal/bank/server/defsys"))
(conpi | e-system "bank-server™
:t-dir (get-tenp-directory)
:force t
:load t)

The defsystem automatically invokes the IDL compiler on the file bank. i dI to generate the source code for the skeletons
and stubs, which are compiled and stored in the bank fadl file.

When compiling to afixed directory, following the standard defsystem rules, the IDL will only be recompiled if the fad file
isout of date. (bank. i dlI will always be recompiled by the example form above, because it specifies atemporary output
directory, in order to avoid writing to alocation which may not be writable.)

3.4 Running the server and client

We can now run the bank demo for the first time. To run the server:

1. Inthe Listener, run;

(l oad (exanple-file "corbal/bank/server/defsys"))
(conpi | e-system "bank-server"
:t-dir (get-tenp-directory)
:force t
:load t)
(cl -user:: bank-server)

After performing some initialization, the application presents an information dialog to indicate that the server is ready.
Thisdialog has asingle Stop server button to shut down the server.

After the server's dialog has appeared:

2. Run the following commands in a separate invacation of Common Lisp (in another image):

(l oad (exanple-file "corbal/bank/client/defsys"))
(conpi | e-system "bank-client"
:t-dir (get-tenp-directory)
:force t
:load t)
(cl -user::bank-client)

A single Corba Bank window appears, presenting a GUI to the bank. You can now interact with the bank using the Action
menu to create new accounts, deposit amounts, and so on.

Once you have finished interacting with the bank, close the Corba Bank window to exit the client application. Then click the
Stop server button in the server's dialog to exit the server.

18

4 Writing and Compiling IDL

4.1 Designing the IDL

Thefirst step in developing a CORBA application is to define the interfaces to its distributed application objects. We can
define these interfaces using the CORBA Interface Definition Language (IDL).

Essentialy, the IDL specification of an interface lists the names and types of operations that:
» Any CORBA object, satisfying that interface, must support.
» Any CORBA client, targeting such an object, may request.

Our application manages three types of CORBA object, representing accounts, checking accounts, and banks. We declare the
interfaces to all three objects within the same CORBA module, Banki ngDeno:

nmodul e Banki ngDenp {
i nterface account {
/1 details follow

h

i nterface checki ngAccount : account {
/] details follow

h

i nterface bank {
/1 details follow

H
H

The following subsections describe the IDL declarations for each of the three interfaces. You can find the complete IDL
description for the bank demo in:;

(exampl e-edit-file "corbal bank/bank.idl")

4.1.1 IDL for the account interface

We begin with the IDL definition of the interface to an account object.

/1 in nodul e Banki ngDenp

i nterface account {
readonly attribute string nane;
readonly attribute | ong bal ance;
void credit (in unsigned |ong anount);
exception refusal {string reason;};

void debit (in |long anount)
rai ses (refusal);

19

4 Writing and Compiling IDL

The name of an account isrecorded in its name attribute. The state of an account isrecorded initsbal ance attribute. To
keep things simple, we use CORBA | ong values to represent monetary amounts.

To prevent clients from directly altering the account's name or balance, these attributes are declared asr eadonl y attributes.
The operationscr edi t and debi t are provided to alow updates to an account's bal ance attribute.

The operation cr edi t adds a non-negative amount to the current account bal ance.

Next comes an exception declaration:

exception refusal {string reason;};

This declares a named exception, r ef usal , that the debit operation usesto signal errors. Ther ef usal exception isdeclared
to contain ar eason field that documents the reason for failure in the form of ast ri ng.

The operation debi t subtracts a given amount from the current balance, provided doing so does not make the account
balance negative. Qualifying debi t by the phrase:

rai ses (refusal)

declares that invoking this operation may raise the exception r ef usal . Although a CORBA operation may raise any
CORBA system exception, its declaration must specify any additional user-defined CORBA exceptions that it might raise.

This completes the IDL declaration of theaccount interface.

4.1.2 IDL for the checkingAccount interface

The bank application also manages another sort of account called a checking account. While an ordinary account must
maintain a positive balance, achecki ngAccount may be overdrawn up to an agreed limit.

We use IDL's notion of interface inheritance to capture the intuition that a checking account is a special form of account:

/1 in nodul e Banki ngDenp
i nterface checki ngAccount : account {
readonly attribute long limt;

h

The declaration checki ngAccount : account specifiesthat theinterface checki ngAccount inherits al the operations
and attributes declared in the account interface. The body of the definition states that achecki ngAccount aso supports
the additional | i mi t attribute.

Thefact that checki ngAccount inherits some operations from account does not imply that the methods implementing
those operations need to be inherited too. We will exploit this flexibility to provide a speciaized debi t method for
checki ngAccounts.

4.1.3 IDL for the bank interface

We can now design the interface of abank object. Theintention isthat a bank associates customer names with accounts,
with each name identifying at most one account. A client is able to open accounts for new customers and to retrieve both
accounts and checking accounts for existing customers from the persistent store. If the client attempts to open a second
account under the same name, the bank should refuse the request by raising an exception. Similarly, if the client attempts to
retrieve an account for an unknown customer, the bank should reject the request by raising an exception.

The IDL definition of the bank interface captures some of these requirements:

/1 in nodul e Banki ngDenp

20

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

4 Writing and Compiling IDL

i nterface bank {
readonly attribute string nane;
exception duplicateAccount{};

account openAccount (in string nane)
rai ses (duplicateAccount);

checki ngAccount openChecki ngAccount (i n string nane,
inlong linmt)
rai ses (duplicateAccount);

excepti on nonExi stent Account{};

account retrieveAccount(in string nane)
rai ses (nonExi stentAccount);

voi d cl oseAccount (in account account);

I
The name of abank isrecorded in its nane attribute.

The operation openAccount isdeclared to take a CORBA st ri ng and return an account . Because account isdefined as
an interface, and not atype, this means that the operation will return areference to an account object. Thisillustrates an
important distinction between ordinary values and objects in CORBA: while members of basic and constructed types are
passed by value, objects are passed by reference.

The quaificationr ai ses (dupl i cat eAccount) specifies that openAccount can raise the user-defined exception
dupl i cat eAccount , instead of returning an account. (The exception dupl i cat eAccount hasno fields.)

The operation openChecki ngAccount issimilar to openAccount , but takes an additional argument, | i mi t, which
represents the account's overdraft limit.

The operationr et ri eveAccount looks up the account (or checking account), if any, associated with a customer name,
returning an object reference of interface account . The operation may raise the exception nonExi st ent Account to
indicate that there is no account under the supplied name.

The last operation, cl oseAccount , closes an account by deleting it from the bank's records.

Because checki ngAccount inheritsfrom account , achecki ngAccount object may be used wherever an account
object is expected, whether as the actual argument, or the result, of an operation. For instance, this means that we can use
cl oseAccount to close checking accounts as well as accounts; andto user et ri eveAccount to fetch checking accounts
aswell as accounts.

The complete IDL definition for the bank can be found in file bank. i dl .

4.2 Compiling IDL for a CORBA application

The LispWorks ORB product includes an IDL compiler that it uses to check and compile IDL filesinto Common Lisp fad
files. When the IDL file is processed by the preprocessor, it maps the IDL into Common Lisp. Appendix A: Common Lisp
IDL Binding provides a specification for a standard mapping from CORBA IDL to Common Lisp.

According to this specification:
* CORBA types are mapped to Common Lisp types and classes.
» CORBA interfaces are mapped to Common Lisp classes.

* CORBA interface inheritance is mapped to Common Lisp class inheritance.

21

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

4 Writing and Compiling IDL

» CORBA attributes are mapped to Common Lisp getter and setter functions.
» CORBA operations are mapped to Common Lisp generic functions.
» CORBA exceptions are mapped to Common Lisp conditions.

By including the IDL file in the defsystem, the application can access these mappings.

4.3 Mapping IDL to Common Lisp

To provide a better understanding of the IDL to Common Lisp mapping, we can take alook at the result of applying the
mapping to the filebank. i dI .

Parsing the IDL defines a package BANKI NGDEMO.

As an example of the mapping scheme, the following subsections examine the Common Lisp counterparts of some of the
more representative IDL declarations from the file bank. i dlI .

4.3.1 Mapping for basic types

The IDL typesstring, | ong, and unsi gned | ong are mapped to the Common Lisp typescor ba: stri ng, cor ba: | ong,
and cor ba: ul ong, which are typedefs for thetypesst ri ng, i nt eger, andi nt eger.

4.3.2 Mapping for interfaces

The IDL interfacesaccount , checki ngAccount , and bank map to the Common Lisp classes Banki ngDeno: account ,
Banki ngDenp: checki ngAccount , and Banki ngDeno: bank.

Notice how IDL interface inheritance (checki ngAccount : account) maps naturally onto Common Lisp class inheritance:
the class Banki ngDenp: checki ngAccount isdefined as a subclass of Banki ngDeno: account .

4.3.3 Mapping for attributes

The read-only balance attribute of an IDL account gives rise to the Common Lisp generic functions:

op: bal ance

If we had omitted ther eadonl y keyword from the definition of the bal ance attribute, the mapping would have introduced
an additional generic setter function:

(setf op: bal ance)

4.3.4 Mapping for operations
The IDL operationcr edi t is mapped to the Common Lisp generic function:

op:credit

InIDL, thecr edi t operation is defined withintheaccount interface, declaring it to be an operation on account objects.
The Common Lisp language binding adopts the convention that an operation's target object should be passed as the first
argument of the corresponding Common Lisp generic function. Thus the first parameter of the generic function op: credi t
is an object of type Banki ngDeno: account .

22

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm

4 Writing and Compiling IDL

The operation'si n and i nout arguments become the remaining parameters of the corresponding Common Lisp generic
function. Inthis case, thecr edi t operation specifiesasinglei n parameter, i n unsi gned | ong anount, that determines
the second and only other parameter, anount , of the op: cr edi t generic function.

The operation's result type, and any other parameters declared asout or i nout , become results of the corresponding
Common Lisp generic function. In this case, because the result type of cr edi t isvoi d, and the operation has no out or
i nout parameters, op: credi t hasan empty result list.

4.3.5 Mapping for exceptions

The IDL exception r ef usal maps onto the Common Lisp class Banki ngDeno: account / r ef usal . Its member,
reason string;, mapsontoaslotreason of typestri ng.

Note that Banki ngDenp: account / r ef usal isasubclass of CORBA: user except i on and, by inheritance, of Common
Lisp condi ti on. This meansthat CORBA user exceptions can be raised on the server, and handled in the client, using the
standard Common Lisp condi t i on mechanism.

23

http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_cnd.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_cnd.htm

5 The Bank Client

5.1 The client

In this section, we design and implement a CORBA client. Our client presents a graphical user interface to abank aobject and
its operations. We implement the user interface using CAPI.

Because the primary motivation for thistutorial isto illustrate the use of CORBA, we focus less on the design of the
graphica interface, and more on the method for interacting with CORBA objects.

5.2 The client's perspective

From the client's perspective, the IDL definition of a bank's interface fully determines its functionality. This means that we
need only rely on theinformation in the IDL to interact with abank object. In particular, knowing the IDL description, we
can implement the client before an implementation of abank object is available.

The bank fadl file, produced by the IDL compiler does two things:
» Specifies the protocol for interacting with CORBA objects that satisfy the interfacesin the IDL file, bank. i dl .
* Provides the client-side implementation of this protocol.

Thisfasl should be used by any application that wantsto act as a client with respect to some CORBA object matching an
interfaceinthebank. i dl file. The bank fad file defines classes Banki ngDeno: account ,
Banki ngDenp: checki ngAccount , and Banki ngDeno: bank.

The class Banki ngDeno: checki ngAccount isdefined to inherit from Banki ngDenb: account , matching the inheritance
relationship in the IDL. Instances of these classes act as proxies for CORBA objects on the server.

The bank fasl also defines a stub method, specialized on the appropriate proxy class, for each protocol function stemming
from an IDL attribute or operation. When the client applies the generic function to a particular target proxy, the stub method
communicates with the ORB to invoke the corresponding operation on the actual target object in the server. If the request
succeeds, the stub method returns the result to the client. If the request fails, raising a CORBA user or system exception, the
stub method raises the corresponding Common Lisp condition of the appropriate class. This condition can then be handled by
the client code using standard Common Lisp constructs.

5.3 Implementing the bank client's GUI

To keep things simple, we organize the structure of the user interface to closely match the IDL description of the bank. Each
CORBA object is presented in its own interface. We define one subclass of capi : i nt er f ace for each CORBA interface.

The definition of these subclasses is derived from the declaration of their corresponding CORBA interfaces. In particular, we
use display panesto represent IDL attributes, and buttons or menu itemsto invoke IDL operations. Each interface contains a
slot that contains the CORBA object it represents.

Clicking on abutton of the frame triggers a callback that invokes the corresponding operation on the CORBA object
associated with that frame. The user is notified of any CORBA user-exceptions that these operations raise. The CORBA-
specific code resides, to alarge extent, in these callbacks.

The source code for the client's GUI isinthefilecl i ent/interfaces. lisp.

24

5 The Bank Client

5.4 Defining the interfaces

Note: This section assumes some basic familiarity with the CAPI library. See the CAPI Reference Manual for details.

In this section, we define three CAPI interface classesaccount - i nt er f ace, checki ngAccount -i nt er f ace, and
bank-i nt er f ace. These classes are used to present graphical interfaces to CORBA aobjects with the IDL interfaces
account , checki ngAccount , and bank.

We begin by defining the interface classaccount - i nt er f ace:

(capi:define-interface account-interface ()
((account-ref :initarg :account-ref)
(account-nane :initarg :account-nane :accessor account-nane)
(bank-interface :initarg :owner))
(: panes
(bal ance-field capi:display-pane
:title (:initarg :account-nane)
:visible-min-width '(:character 10)
2visible-max-width nil)
(but t on- panel capi: push-button-pane
:cal Il backs ' (credit debit)
citems ' ("Credit" "Debit")
:cal | back-type :interface))
(:layouts
(account -l ayout capi:colum-1ayout '(balance-field
butt on-panel)))
(:default-initargs :auto-menus nil :max-width t))

Thisis how we use an instance of classaccount -i nt er f ace. We store the name of the customer owning this account in the
title of the display pane (usingi nitarg :title).

Theaccount - ref dot storesa CORBA object reference (of class Banki ngDenp: account) to the corresponding CORBA
account object onthe server. The bank-i nt er f ace slot stores a pointer to the bank interface for this object.

The pane bal ance-fi el d reports the state of the CORBA object's balance attribute as a readonly text field. We delegate the
initialization of thisfield valuetoani ni ti al i ze-i nst ance after method speciaized on
account - i nt er f ace. The value needs to be updated after each invocation of a CORBA debi t or cr edi t operation.

The button panel but t on- panel defines buttons to activate callbacks

debi t - cal | back and cr edi t - cal | back. These callbacks prompt the user for amounts and then invoke the corresponding
CORBA operationsdebi t and cr edi t on the object reference stored intheaccount - r ef field. We will implement these
callbacks in a moment.

The buttons are laid out in acolumn layout account - | ayout . Mirroring the fact that the IDL interface checki ngAccount
inherits from account , we define the Common Lisp frame class checki ng- account - i nt er f ace as a subclass of
account-interface:

(capi:define-interface checking-account-interface
(account-interface) ()

(: panes

(limt-field capi:display-pane
:visible-min-width '(:character 10)
:visible-max-width nil))

(:layouts

(checki ng- account -1 ayout capi : col um- 1| ayout

"(account-layout limt-field))))

Thepanelimnt-fieldreportsthe state of the CORBA object'sl i i t attribute as areadonly text field. Again, we can
delegate the initialization of thisfield'svaluetoani ni ti al i ze i nst ance after method specialized on

checki ng- account -i nterface.

25

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

5 The Bank Client

Thelayout checki ng- account - | ayout simply lays out the inherited layout account - | ayout , containing the account's
balance, together with the additional 1 i mi t - fi el d.

The definition of bank- i nt er f ace class follows the same pattern:

(capi:define-interface bank-interface ()
((bank-ref :initarg :bank-ref))
(: nmenu-bar open-actions)
(: menus
(open-actions
"Action"
(("Open Account" :call back 'open-account-cal |l back)
(" Open Checki ng Account" :call back
' open- checki ng- account - cal | back)
("Retrieve Account" :callback 'retrieve-account-call back)
("d ose Account" :callback 'close-account-call back))
:cal | back-type :interface))
(:layouts
(accounts-area capi:rowlayout ()
:accessor accounts-area
chorizontal -scroll t))
(:default-initargs :auto-menus nil :best-wi dth 400))

Theaccount s- ar ea layout keepstrack of theaccount - i nt er f aces created by the bank interface as the result of
invoking operations on the CORBA bank object. Thislist is maintained to prevent the user from obtaining more than one
interface to the same account. We need to update it whenever an account interface is exited.

The interface menu items Open Account, Open Checking Account, Retrieve Account, and Close Account activate callbacks
open- Account - cal | back,
open- Checki ng- Account - cal | back, retri eve- Account - cal | back, and cl ose- Account - cal | back.

These callbacks prompt the user for appropriate arguments and then invoke the corresponding CORBA operations
openAccount , openChecki ngAccount, retri eveAccount, and cl oseAccount on the object reference stored in the
bank-ref dot. We will see theimplementation of these callbacks in a moment.

5.4.1 Initializing and exiting account frames

Each time we make a new account interface we want to ensure two things:
» The account interface is registered in the bank interface that spawned it.
* Its balance pane displays the correct value.

Aneasy way to do thisistoadd ani ni ti al i ze-i nst ance after method specialized onaccount -i nt erf ace. (In
Common Lisp, each call to make an instance of a given classis automatically followed by acall to initialize that instance;
you are free to specializethei ni ti al i ze-i nst ance generic function on particular classes.)

(defnethod initialize-instance :after ((self account-interface) &key)
(with-slots (account-ref balance-field) self
(when account -ref
(setf (capi:display-pane-text bal ance-field)
(format nil "~A" (op:balance account-ref))))))

Here, we encounter our first example of invoking a CORBA operation on a CORBA abject. The Common Lisp variable
account - r ef , of class Banki ngDenp: account , contains aproxy for a CORBA account object on the server. The
application (op: bal ance account -ref) invokes a stub method specialized on the proxy's class. The stub method
forwards the request across the ORB to the actual object on the server.

The reguest is executed on the object in the server and the result passed back across the ORB to the stub method, which

26

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

5 The Bank Client

returns the value to the client asacor ba: | ong. Thisvalueisthen used to set theinitial value of the bal ance field.

We can initialize the interface for a checking account in asimilar way:

(defmethod initialize-instance :after (
(sel f checking-account-interface) &key)
(with-slots (account-ref linmt-field) self
(when account -r ef
(setf (capi:display-pane-text limt-field)
(format nil "~A" (op:limt account-ref))))))

Inheritance ensures that the method on account - i nt er f ace is called which registers the interface and sets up itsbal ance
field;, acal totheop: i mi t stub determinestheinitial value of itsl i ni t field.

For convenience, we define a generic function make- account - f r ame that makes the correct class of frame for agiven
account object reference:

(def met hod nmake-account-frane ((self Banki ngDenb: account)
&key bank-interface title)
(push-newitem bank-interface
title
(make-instance 'account-interface
:account-ref self
;account-nane title
:owner bank-interface)))
(def met hod nmake-account-frane ((self Banki ngDenb: checki ngAccount)
&key bank-interface title)
(push-newitem bank-interface
title
(make-instance ' checki ng-account-interface
:account-ref self
;account-nane title
:owner bank-interface)))

These methods simply dispatch on the class of the object reference to make an account -i nter f ace or
checki ngAccount - i nt er f ace as appropriate.

5.4.2 Defining the callbacks

Defining the callbacks attached to each button is straightforward. Recall that in CAPI, because we stated that the button
callback typewas: i nt er f ace, the argument passed to a callback is the interface whose activation triggered that callback.

Thecredit-call back isactivated by the Credit button of some account interface:

(defun credit (self)
(with-slots (balance-field account-ref) self
(let ((amount (capi:pronpt-for-integer "Amount?" :min 0)))
(when amount
(op:credit account-ref anount)
(setf (capi:display-pane-text bal ance-fi el d)
(format nil "~A" (op:balance account-ref)))))))

The callback is passed the account interface. It then extracts the CORBA object reference stored in the frame's

account - r ef dot and prompts the user for an amount. The function capi : pronpt - f or - i nt eger queriesthe user for an
integer and returnsni | if the user cancelsthe dialog. If the amount isvalid, the callback invokes the stub method

op: credi t onthe CORBA object reference with the specified absolute value of the amount (recall that the cr edi t
operation expects an unsigned | ong as its argument). Finally, it updates the bal ance field of the frame with the current
value of the object's bal ance attribute, obtained by invoking the stub method op: bal ance.

27

5 The Bank Client

The definition of debi t - cal | back isvery similar to the definition of cr edi t - cal | back:

(defun debit (self)
(with-slots (balance-field account-ref) self
(let ((amount (capi:pronpt-for-integer "Amount?" :min 0)))
(when anount
(handl er - case
(progn
(op: debit account-ref anmount)
(setf (capi:display-pane-text bal ance-fi el d)
(format nil "~A" (op:bal ance account-ref))))
(Banki ngDeno: account/ref usa
(xx)
(capi: di spl ay-message "Debit returned refusal wth
string: <~A>"
(op:reason xx))))))))

Theonly differenceisthat debi t - cal | back must deal with the additional possibility that the debi t operation, when
invoked on the target object, may fail, raising the IDL exception refusal. If the object raises this exception, the op: debi t
stub method signalsit asa Common Lisp condition of class

Banki ngDeno: account/ ref usal .

The exception can then be caught and handled in any of the standard Common Lisp ways. Here, we smply place the
invocation in the body of ahandl er - case statement with an appropriate exception clause to handle the condition.

Theopen- account - cal | back is activated by the openAccount - but t on of some bank frame:

(defun open-account-cal | back (self)
(with-slots (bank-ref) self
(let ((nane (capi:pronpt-for-string "Name?")))
(when nane
(handl er - case
(let ((account-ref
(op: openaccount bank-ref nane)))
(make-account -frane account-ref
:bank-interface self :title name))
(Banki ngdeno: Bank/ Dupl i cat eAccount

()

(capi : di spl ay- nessage "Cannot create account for
~A" nane)))))))

The callback extracts the CORBA object reference stored in the interface's bank- r ef slot. The function

capi : pronpt - f or - st ri ng queries the user for the new customer's name returning a string (or ni | if the user cancelsthe
dialog). If the dialog has not been cancelled, the callback invokes the stub method op: openAccount on the target object
reference bank, passing the argument name. If successful, the invocation returns an object reference, of class

Banki ngDeno: account , to an IDL account object, which is then used to make and start anew account -i nt er f ace, via
acal tomake- account - f r ane.

Recall that the IDL operation openAccount may fail, raising the IDL user exception dupl i cat eAccount . Asinthe
definition of debi t - cal | back, we cater for this eventuality by placing the invocation in the body of a

handl er - case statement and install a handler on the corresponding Common Lisp condition of class

Banki ngDeno: bank/ dupl i cat eAccount . Thishandler ssimply informs the user of the exception using the CAPI function
di spl ay- nessage to create and display asimple aert dialog box.

The definition of open- checki ng- account - cal | back issimilar to the definition of openAccount - cal | back but
prompts the user for an additional integer to pass as the overdraft limit of the new checking account:

(defun open-checki ng-account-cal | back (self)
(with-slots (bank-ref) self
(let ((nane (capi:pronpt-for-string "Name?")))
(when nane

28

http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_hand_1.htm

5 The Bank Client

(let ((limt (capi:pronpt-for-integer "Limt?")))
(when limt
(handl er - case
(let ((account-ref
(op: openchecki ngaccount bank-ref
nane linit)))
(make-account -frane account-ref
:bank-interface self :title name))
(Banki ngdeno: Bank/ Dupl i cat eAccount
()
(capi : di spl ay- message "Cannot create anot her
account for ~A" nane)))))))))

While openAccount and openChecki ngAccount create accounts for new customers, ther et ri eveAccount operationis
simply meant to look up the account of an existing customer:

(defun retrieve-account-call back (self)
(with-slots (bank-ref) self
(let ((nane (capi:pronpt-for-string "Name?")))

(when nane
(if (find-nanmed-franme self nane)
(capi: display-nmessage "Already viewing it...")

(handl er - case
(let ((account-ref
(op:retrieveaccount bank-ref nane)))
(when (op:ls_a account-ref (op:id
Banki ngdeno: _Tc_Checki ngaccount))
(setf account-ref
(op: narrow ' Banki ngdenn: Checki ngaccount
account-ref)))
(make-account -frane account -ref
:bank-interface self :title nane))
(Banki ngdenn: Bank/ NonExi st ent Account
()
(capi : di spl ay- message "No account exists for
name ~A" nane))))))))

This callback incorporates atest that prevents the user from being presented with more than one interface to the same
account. It invokes the stub method op: r et ri eveAccount only if the account under that name is not already on display.
Because of IDL inheritance, the server implementing the IDL r et ri eveAccount operation may return any object reference
whose interface inherits from the IDL account interface.

In particular, the server may return an IDL checki ngAccount asaspecia instance of an IDL account. In Common Lisp
terms, this means that the stub method Qp: r et ri eveAccount may return an object reference of class

Banki ngDenp: checki ngAccount asaspecia instance of

Banki ngDenp: account . The call to make- account - f r ame dispatches on the actual, or most derived, class of the
resulting object reference, making anaccount - i nt er f ace or checki ng- account - i nt er f ace as appropriate.

The definition of thecl ose- account - cal | back is straightforward:

(defun cl ose-account-cal | back (self)
(with-slots (bank-ref) self
(let ((nane (capi:pronpt-with-list (all-frame-nanmes self)
" Choose account")))
(when name
(op: cl oseaccount bank-ref
(with-slots (account-ref)
(find-nanmed-frame self nane)
account-ref))
(renove-account-franme self name)))))

The function pr onpt - wi t h-1i st presents adiaog asking the user to select a name from the list of available account frames

29

5 The Bank Client

(indexed by their

account - nane), returning ni | if the user decides to cancel the dialog. Given avalid selection, the callback invokes the stub
method op: cl oseAccount on the target object reference, bank- r ef , passing the name of the selected account. Finally,

the account interface is removed from the bank interface.

5.4.3 Initializing the ORB and obtaining the first object reference

A client can only communicate with a CORBA aobject if it possesses areference to that object. This raises the question of
how the client obtains itsinitial object reference. The fact that some IDL operation may return an object reference is of no
help here: without areference to specify asitstarget, there is no way to invoke this operation.

In more detail, before a client can enter the CORBA environment, it must first:
* Beinitialized into the ORB.
» Get areference to the ORB pseudo-object for use in future ORB operations.
» Get aninitia reference to an actual object on the server.

CORBA provides a standard set of operations, specified in pseudo IDL (PIDL), to initialize applications and obtain the
appropriate object references.

Operations providing access to the ORB reside in the CORBA module. (Like an IDL interface declaration, an IDL or PIDL
modul e declaration defines a new namespace for the body of declarations it encloses. What it does not do is define anew type
of CORBA object.) Operations providing access to an Object Adapter, Interface Repository, Naming Service, and other
Object Servicesreside in the ORB interface defined within the CORBA module.

To provide some flavor of PIDL, hereis afragment of the PIDL specification of CORBA that we rely on in our
implementation of the bank client.

nmodul e CORBA {
interface Object {
boolean is_a (in string |ogical _type_id);
3
interface ORB {
string object_to_string (in Ooject obj);
bject string_to_object (in string str);

b

typedef string ORBid;

typedef sequence <string> arg_|list;

ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);
b

The bj ect interface isimplicitly inherited by all IDL interfaces, much as every Common Lisp class inherits from the class
st andar d- obj ect .

Thei s_a operation provides atest for inheritance (thel ogi cal _t ype_i d isastring representation of an interface
identifier). The operation returns true if the object is an instance of that interface, including if that interface is an ancestor of
the most derived interface of that object.

The ORB operationsobj ect _to_stringandstring_to_object provideaninvertible mapping from object references
to their representations as strings.

Notice that the CORBA operation ORB_i ni t is defined outside the scope of any interface, providing a means of
bootstrapping into the CORBA world. Calling ORB_i ni t initializes the ORB, returning an ORB pseudo-object that can be
used as the target for further ORB operations.

30

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm

5 The Bank Client

Like most other language bindings, the Common Lisp binding adopts the pseudo-objects approach in which these CORBA
and ORB operations are accessed by applying the binding's normal IDL mapping rules to the PIDL specification.

In thistutorial, we use avery simple technique to obtain the initial object reference. The client assumes that the server has
published areference to itsimplementation of the bank object, encoded as a string, in ashared file. After starting up, the
client reads the file, decodes the string as an object reference, and then uses this reference as the target of further operations.

Here is the remaining Common Lisp code that completes the implementation of the client:

(defun bank-client ()
(let ((orb (op:orb_init nil "LispWwrks ORB")))
(let ((bank-ref (op:narrow ' Banki ngDenp: bank
(file-to-object orb))))
(capi: di splay (rmake-instance 'bank-interface
: bank-ref bank-ref
:title "Corba Bank")))))

The defparameter * bank-i or - fi | e* isthe name of the shared file used to pass the reference of the bank object from the
server to the client.

Themethodfi | e- as- stri ng reads afile's contents.

Thetop-level | et statement first initializes The LispWorks ORB by calling the Common Lisp generic function

op: ORB_i ni t corresponding to the PIDL ORB_i ni t operation. The first argument to thiscall isan empty list. Passing an
empty sequence instructsthe op: ORB_i ni t function to ignore this argument and use the application's command line
arguments (if any) instead. The value of the second argument, " Li spWr ks ORB", merely identifies the ORB to use.

Invoking op: st ri ng_t o_obj ect onthis ORB, passing the string read from the shared file, reconstitutes the string as an
unspecific object reference of class CORBA: Obj ect . Calling the op: nar r ow method on this object reference narrows (that
is, coerces) it to amore specific abject reference of class

Banki ngDeno: bank. (The op: nar r ow method employs an implicit call to the object'si s_a operation to check that the
desired coercion is safe.)

Finally, the resulting object reference bank- r ef , of class Banki ngDenp: bank, isused to make and start a new bank
interface, displaying the initial GUI to the user. The implementation of the client is now complete.

31

http://www.lispworks.com/documentation/HyperSpec/Body/s_let_l.htm

6 The Bank Server

6.1 The server

In this chapter, we use Common Lisp to desigh and implement a CORBA server using the LispWorks ORB.

Our server presents an object-oriented interface to abank object and its accounts. Because we want the bank's account
records to persist beyond the lifetime of the server, we would store the account records in a database. This database could be
manipulated by the server using an SQL interface, such as that currently available with the LispWorks product.

Since the primary motivation for thistutoria istoillustrate the use of CORBA, we simply simulate the database using a hash
table. It would be fairly easy to replace thisimplementation with code that manipulates areal database.

The hash table simply uses a structure instance for each row:

(defstruct database-row nanme bal ance limt)

In the case of an account that does not allow an overdraft, |i mit will benil .

6.2 Implementing CORBA objects on the server

A CORBA server hasto provide an implementation object, called a servant, for each of the proxy objects manipulated by the
client. Our server needs to implement the initial bank servant, and then create new servants for each of the account objects
created in response to openAccount , openChecki ngAccount andretri eveAccount regquests.

Each of these servants needs to be registered in the CORBA environment and assigned an aobject reference, so that the ORB
can direct incoming requests to the appropriate servant.

In CORBA, the primary means for an object implementation to access ORB services such as object reference generation is
viaan object adapter. The object adapter is responsible for the following functions:

» Generation and interpretation of object references.

» Registration of servants.

» Mapping object references to the corresponding servants.
 IDL method invocations, mediated by skeleton methods.
* Servant activation and deactivation.

The LispWorks ORB provides an implementation of the Portable Object Adapter (POA). This object adapter forms part of
the CORBA standard and, like the ORB, has an interface that is specified in pseudo IDL (PIDL). The Common Lisp interface
to the POA conforms closely to the interface obtained by applying the Common Lisp mapping rules to the POA's PIDL
specification.

A POA object manages the implementation of a collection of objects, associating object references with specific servants.
While the ORB is an abstraction visible to both the client and server, POA objects are visible only to the server.

User-supplied object implementations are registered with a POA and assigned object references.When aclient issues a
reguest to perform an operation on such an object reference, the ORB and POA cooperate to determine the servant on which

32

6 The Bank Server

the operation should be invoked, and perform the invocation as an upcall through a skeleton method.

The POA alows several ways of using servants although it does not deal with the issue of starting the server process. Once
started, however, there can be a servant started and ended for a single method call, a separate servant for each object, or a
shared servant for all instances of a particular object type. It allows for groups of objects to be associated by means of being
registered with different instances of the POA object and allows implementations to specify their own activation techniques.
If the implementation is not active when an invocation is performed, the POA can start one.

Unfortunately, the flexibility afforded by the POA meansthat its interface is complex and somewhat difficult to use. The
examplein this tutorial makes only elementary use of the POA.

Hereisthe PIDL specification of the facilities of the POA that the bank tutorial uses:

nodul e Portabl eServer {
nati ve Servant;
i nterface POAManager ({
exception Adapterlnactive{};
void activate() raises (...);

3
interface PQOA {
excepti on WongAdapter {};
readonly attribute POAManager the_POAManager;
bj ect servant _to_reference(in Servant p_servant)
raises (...);
Servant reference_to_servant(in bject reference)
rai ses (WongAdapter, ...);

)

The POA-related interfaces are defined in a modul e separate from the CORBA module, called the Por t abl eSer ver module.
It declares several interfaces, of which only the POA and POAMVanager are shown here.

The Por t abl eSer ver module specifiesthe type Ser vant . Values of type Ser vant represent language-specific
implementations of CORBA interfaces. Since this type can only be determined by the programming language in question, it
ismerely declared as a native typein the PIDL.

In the Common Lisp mapping, the Ser vant type maps to the abstract class Por t abl eSer ver : Ser vant base. User
defined Common Lisp classes that are meant to implement CORBA objects and be registered with a POA must inherit from
this class.

Each PQA object has an associated POAManager abject. A POA manager encapsulates the processing state of the POA itis
associated with. Using operations on the POA manager, an application can cause requests for a POA to be queued or
discarded, and can cause the POA to be deactivated.

A POA manager has two main processing states, holding and active, that determine the capabilities of the associated POA
and the handling of ORB requests received by that POA. Both the POA manager and its associated POA areinitially in the
holding state.

When a POA isin the holding state, it simply queues requests received from the ORB without dispatching them to their
implementation objects. In the active state, the POA receives and processes requests. Invoking the POA Manager's
act i vat e operation causes it, and its associated POAS, to enter the active state.

A POA object provides two useful operations that map between object references and servants. The

servant _t o_r ef er ence operation has two behaviors. If the given servant is not already active in the POA, then the POA
generates a new object reference for that servant, records the association in the POA, and returns the reference. If the servant
isaready active in the POA, then the operation merely returns its associated object reference.

33

6 The Bank Server

Ther ef erence_t o_ser vant operation returns the servant associated with a given object reference in the POA. If the
object reference was not created by this POA, the operation raises the W ongAdapt er exception.

6.3 The server's perspective

The bank fadl file corresponding to the bank. i dI file (produced when compiling the defsystem) defines a servant class for
each of the protocol classes corresponding to an IDL interface. Each of these classes inherits from the abstract class
Por t abl eSer ver : Ser vant Base, allowing instances of these classes to be registered with a POA.

The user provides an implementation of a servant class by defining a subclass of that class, called an implementation class,
and defining methods, specialized on this implementation class, for each of the protocol functions corresponding to an IDL
attribute or operation.

The bank fadl file defines a concrete skeleton method, specialized on the appropriate servant class, for each protocol function
stemming from an IDL attribute or operation. When the POA receives arequest from a client through the ORB it looks up the
servant targeted by that request, and invokes the corresponding skeleton method on that servant. The skeleton method
performs an upcall to the method that implements the protocol function for the implementation class of the servant. If the
upcall succeeds, the skeleton method sends the result to the client. If the method raises a Common Lisp condition
corresponding to a CORBA user or system exception, the skeleton method sends the CORBA exception back to client.

6.4 Implementing the bank server

6.4.1 Implementing the servant classes

The bank fadl file defines three abstract servant classes Banki ngDenp: account - ser vant ,
Banki ngDeno: checki ngAccount - ser vant , and Banki ngDeno: bank- ser vant corresponding to the IDL interfaces
account , checki ngAccount , and bank. The class Banki ngDenp: checki ngAccount - ser vant isdefined to inherit
from Banki ngDenp: account - ser vant , matching the inheritance relationship in the IDL.

Note that each class inherits from the abstract class Por t abl eSer ver : Ser vant Base, allowing instances of the classto be
registered with a POA.

In our implementation of the bank server, these servant classes are implemented by the three subclasses:
* bank-i nmpl enent ati on,
e account-inpl enentation
* checki ngAccount -i npl enentati on

The bank- i npl emrent at i on classimplements Banki ngDenp: bank- ser vant by representing a bank as a connection to a
database:

(def cl ass bank-i npl enent ati on (Banki ngDeno: Bank- servant)
((connection :initarg :connection)
(poa :initarg :poa)
(account-inpls :initformnil)))

We have included the poa dlot to record the POA in which the bank servant is active, so that servants representing accounts at
the bank can be registered in the same POA. A dot op: nane corresponding to the attribute name defined inthe IDL is
inherited from the Bank- ser vant , as are definitions of accessor functions for this slot.

Theaccount -i npl enent at i on classimplements Banki ngDeno: account - ser vant :

(defcl ass account-i npl enment ati on (Banki ngDenp: Account - servant)
((bank :initarg :bank)))

34

6 The Bank Server

Aninstance of this class represents an account. The bank slot provides a connection to the database that holds the account's
record. Slotsop: nanme and op: bal ance, corresponding to attributes defined in the IDL, are inherited from
account - ser vant . The nanme dot identifies the record in the database.

Finally, the checki ngAccount - i npl enent at i on classimplements Banki ngDeno: checki ngAccount - ser vant
simply by inheriting from account - i npl enent ati on:

(defcl ass checki ngaccount -i npl enentati on
(Banki ngdeno: Checki ngaccount - ser vant
account - i npl enent ati on)

)

A slotop: i mi t, corresponding to the attribute limit defined in the IDL, isinherited from checki ngaccount - ser vant .

6.4.2 Implementing the servant methods

The next step in implementing the server isto define methods, specialized on the implementation classes, for each of the
protocol functions corresponding to an IDL attribute or operation.

Implementing a protocol function boils down to defining a concrete method for that function that specializes on the
implementation class of itstarget object. Recall that the target object of a protocol function is the first parameter to that
function.

We can now present the implementations of the protocol functions. The op: nanme method corresponding to the narre
attribute is automatically generated by the IDL compiler to reference aslot op: narne in the class that takes the
i nitarg :name toinitializeit. The same rules apply to op: bal ance.

Theop: credi t method on an Account increments the record's balance field by executing a database update statement:

(corba: define-nmethod op:credit ((self account-inplenentation) anount)
(with-slots (op: name bank op: bal ance) self
(with-slots (connection) bank
(let ((old-bal ance (| ookup-row val ue op: nane
connecti on : bal ance)))
(updat e- dat abase-row op: nane connecti on
: bal ance (setf op: bal ance
(+ ol d-bal ance anmount)))))))

Theop: debi t method on an Account executes a database update statement that decrements the record's bal ance field,
provided the balance exceeds the desired amount:

(corba: defi ne-nmet hod op:debit ((self account-inplenmentation) anount)
(with-slots (op:name bank op: bal ance) self
(with-slots (connection) bank
(let ((old-bal ance op: bal ance))
(if (< old-bal ance anpunt)
(error 'Banki ngDenp: Account/ Ref usa
:reason (format ni
"Can't debit ~A because the
bal ance is ~A. "
anount ol d- bal ance))
(updat e- dat abase-r ow
op: name connection
: bal ance (setf op:bal ance (-
ol d-bal ance amount))))))))

Theop: |imt method isautomatically generated, asit is also an attribute.

Because we defined checki ngAccount -servant to inherit from account - ser vant , there is no need to re-implement the

35

6 The Bank Server

op: credi t method for thisimplementation class. However, we do want to define a specialized op: debi t method on
checki ngAccount , to reflect that a checking account can be overdrawn up to its limit:

(corba: defi ne- met hod op: debit (
(sel f checki ngAccount-i npl enentati on) anopunt)
(with-slots (op:name bank op: bal ance) self
(with-slots (connection) bank
(let ((old-balance (| ookup-row val ue op: nane
connection : bal ance))
(limt (1ookup-row value op:name connection :limt)))
(if (< (+ old-balance limt) anount)
(error ' Banki ngDeno: Account/ Ref usal
:reason (format nil "Can't debit ~A because the
bal ance is ~A (limt is ~A)."
amount ol d-bal ance limt))
(updat e- dat abase-row op: nhame connecti on
: bal ance (setf op: bal ance (-
ol d- bal ance amount))))))))

The Banki ngDenp bank op: name method returns the value of the bank's op: nane ot and is automatically generated.

The op: openAccount method on Bank illustrates the raising of CORBA user exceptions:

(corba: defi ne-net hod op: openAccount ((self bank-inplementation)
nane)
(with-slots (connection poa account-inpls) self
(when (find-database-row name connection)
(error ' Banki ngdeno: Bank/ Dupl i cat eaccount))
(creat e-dat abase-row name connecti on)
(updat e- dat abase-row name connection :bal ance 0)
(let ((newaccount (nake-instance 'account-inplenmentation
:nane nane
:bank sel f
:bal ance 0)))
(push new account account-i npl s)
(op: narrow ' Banki ngDeno: Account
(op:servant _to_reference poa new account)))))

If the (fi nd- dat abase-row name connecti on) test succeeds, the call to

(error ' Banki ngdeno: Bank/ Dupl i cat eaccount) raisesaCommon Lisp condition. (We omit the definition of

fi nd- dat abase- r ow, which can be found in the source.) Recall that the condition class

Banki ngDeno: bank/ dupl i cat eAccount correspondsto the IDL dupl i cat eAccount exception. The POA that invoked
this method in response to a client's request will catch the condition and send the dupl i cat eAccount exception back to the
client. If thereis no existing account for the supplied name, the op: openAccount method creates a new record in the

database.

Finally, the method makes anew ser vant of classaccount -i npl enent at i on, registersit with the bank's POA with a call
toop: servant _t o_r ef er ence, and narrows the resulting object reference to the more specific class
Banki ngDeno: account , the class of object referencesto account objects.

The op: openChecki ngAccount method issimilar, except that it initializestheop: | i mi t field of the new account record
with the desired overdraft limit and registers a new servant of class checki ngAccount -i npl enent at i on, returning an
object reference of class Banki ngDenp: checki ngAccount :

(corba: defi ne- met hod op: openChecki ngAccount (
(sel f bank-inplenentation) name limt)
(with-slots (connection poa account-inpls) self
(when (find-database-row nane connecti on)
(error 'Banki ngdeno: Bank/ Dupl i cat eaccount))
(creat e-dat abase-row nane connecti on)
(updat e- dat abase-row nanme connection :balance O :limt limt)

36

6 The Bank Server

(let ((new account (nmake-instance
' checki ngaccount -i npl enent ati on

:name nanme
:bank sel f
: bal ance 0
dlimt limt)))

(push new account account-inpls)

(op: narrow ' Banki ngdeno: Checki ngaccount

(op:servant _to_reference poa new account)))))

Theop: retri eveAccount method usesthe name parameter to find a database row of the given name. If the query returns
ni | , indicating that there is no record with that name, the method raises the CORBA user exception nonExi st ent Account
by signalling the corresponding Common Lisp error.

Otherwise, the method uses the value of theop: 1'i mi t field to distinguish whether the account is an account or a current
account, creating anew servant of the appropriate class:

(corba: define-net hod op:retrieveAccount ((self
bank-i npl enent ati on) nane)
(with-slots (connection poa account-inpls) self
(unl ess (find-database-row name connecti on)
(error 'Banki ngdeno: Bank/ NonExi st ent Account))
(let ((limt (lookup-rowvalue nanme connection :limt))
(bal ance (I ookup-row val ue name connection : bal ance)))
(if (not limt)
(let ((account (make-instance 'account-inplenmentation
:nane nanme :bank self :bal ance bal ance)))
(push account account-inpls)
(op: narrow ' Banki ngDeno: Account
(op:servant _to_reference
poa
account)))
(let ((account (make-instance
' checki ngaccount -i npl ement ati on
:nane nane
:bank sel f
: bal ance bal ance
dlimt limt)))
(push account account-inpls)
(op: narrow ' Banki ngdeno: Checki ngaccount
(op:servant _to_reference
poa

account)))))))
Finally, the cl oseAccount removesthe record of an account from the database by executing del et e- dat abase- r owcall:

(corba: defi ne- met hod op: cl oseaccount
((self bank-inplenentation) account)
(with-slots (connection poa account-inpls) self

(let ((servant (op:reference_to_servant poa account)))
(op: deacti vate_object poa (op:reference_to_id poa account))
(renovef account-inpls servant)
(with-slots (op:name) servant

(del et e- dat abase-row op: nane connection))))

Note that we need to de-reference the object reference account that is passed in as the parameter of the op: ¢l oseAccount
operation, using acall totheop: ref erence_t o_ser vant operation of the POA.

Here, we make implicit use of our knowledge that, in our application, the server only encounters object references registered
withitslocal POA. Thisassumption isnot truein general.

37

6 The Bank Server

6.4.3 Obtaining the initial POA object and registering the first object reference

To complete the implementation of the server we need to write the code that entersit into the CORBA environment. In detail,
we need to:

 |nitidlize the server's ORB.

» Get areference to the ORB pseudo-object for use in future ORB operations.

Get areference to the root POA pseudo-object for use in future POA operations.

Make a bank servant and register it with the POA.

Make the object reference of the bank servant available to the client.

Activate the POA to start processing incoming requests.

To do this, we need to make use of some additional operations specified in the CORBA module:

nmodul e CORBA {
interface ORB {

typedef string Objectld;

exception I nvalidNane {};

Chject resolve_initial _references (in Objectld identifier)
rai ses (InvalidNane);

voi d shutdown(in bool ean wait_for_conpletion);

}
}

The CORBA standard specifies the ORB operationr esol ve_i ni ti al _ref er ences. This operation provides a portable
method for applications to obtain initial referencesto asmall set of standard objects (objects other than the initial ORB).
These objects are identified by a mnemonic name, using a string known as an Obj ect | d. For instance, the Cbj ect | Dfor an
initial POA object is Root POA. (References to a select few other objects, such asthel nt er f aceReposi t ory and

Nani ngSer vi ce, can also be obtained in this manner.)

The ORB operationr esol ve_i ni ti al _r ef er ences returns the object associated with an Obj ect | d, raising the
exception | nval i dNamre for an unrecognized Qoj ect | D.

Meanwhile, the shut down operation instructs the ORB, and its object adapters, to shut down. If the
wai t _for_conpl eti on parameter is TRUE, the operation blocks until all pending ORB processing has compl eted,
otherwise it smply shuts down the ORB immediately.

(defun bank-server ()
(let* ((orb (op:orb_init nil "LispWwrks ORB"))
(root POA (op:resolve_initial _references orb "Root POA")))
(let ((bank-inpl (make-instance 'bank-inpl enentation
: connection (connect-to-database)
: poa root PQA)))
(let ((bank-ref (op:servant_to_reference root POA
bank-inpl)))
(object-to-file orb bank-ref)
(capi: display (nmake-instance 'server-controller
: bank- poa root POA
: bank-ref bank-ref)))
(op: activate (op:the_poanmanager root PQA)))))

Thetop-level function first initializes the LispWorks ORB by calling the Common Lisp generic function op: ORB_i ni t , just
asweinitialized the ORB in the client.

38

6 The Bank Server

The call returns an ORB pseudo-object. Invoking op: resol ve_i niti al _ref er ences onthis ORB, passing the
Obj ect | DRoot PQA, returns a POA object of class Por t abl eSer ver : POA. Thisisthe CORBA standard method for
obtaining the initial POA object. Note that root POA isinitially in the holding state.

Next, we connect to the database and use the connection to make a bank servant. We register the servant with the PQA,
Root POA, and publish the resulting abject reference, encoded as a string, in the shared file.

We then obtain the POA Manager for the POA using the POA operation op: t he_PQOAManager . Thecall toop: acti vat e
moves the POA out of the holding state, into the active state, ready to receive and process incoming requests.

This completes the description of our implementation of the server.

39

/ The LispWorks ORB

7.1 The CORBA modules

The Common Lisp CORBA product is made up of the following modules, which can be loaded into the image using
require.

cor ba- support The client side of the ORB run time system plus the IDL parser.
corba-orb The server side, the actual LispWorks ORB, which loads cor ba- support if itisnot present.
cor ba Graphical tools.

7.2 Parsing IDL into stubs and skeletons

The interface to the IDL parser is currently via defsystem. Once the
cor ba- support module has been loaded, defsystem will have been extended with the following extra types.

idl-file
cidl-client-definition
;idl-server-definition

The:idl-fil e typeinstructsthe IDL parser to generate code for both the client-side stubs and the server-side skeletons.
The:idl-client-definitiontypeinstructsthe DL parser to generate code only for the client-side stubs. The
;idl-server-definitiontypeinstructsthe IDL parser to generate code only for the server-side skeletons.

For example, atypica use would be something like:

(def system server-side ()

s menbers (
("grid" :type :idl-file)
"grid-inpl"
)

‘rules

((:in-order-to :conpile :al

(:requires (:load :previous)))))

(defsystemclient-side ()
s menbers (
("grid" :type :idl-client-definition)))

7.3 Configuring a name service and an interface repository

The LispWorks ORB is not supplied with an interface repository or a naming service, but it is possible to configure the ORB
to present these servicesin responseto callsof op: i st _initial _services andop:resol ve_initial _references.
Configuration can either be viainitial references or stored persistently.

http://www.lispworks.com/documentation/HyperSpec/Body/f_provid.htm

7 The LispWorks ORB

7.3.1 Configuring via initial references

The ORB initargs - ORBI ni t Ref and - ORBDef aul t | ni t Ref are processed as defined by the CORBA specification,
available from OMG.

For example, with an application | wcor ba:

| wcorba - ORBI nit Ref NanmeServi ce=cor bal oc: : ww. wher ever. com 80/ Dev/ NaneSer vi ce

will configure the name service to contact the machine specified by the cor bal oc URL.

7.3.2 Persistent configuration

Thefunction cor ba: set - pl uggabl e- nodul e- det ai | s can be used for this purpose. For example:

(corba: set - pl uggabl e- nbdul e-details "InterfaceRepository"
cior-string "1 OR 000000000000002149444c...")

(corba: set - pl uggabl e- nbdul e-detail s "NaneServi ce"
cior-string "1 OR 000000000000002149444c...")

would direct the ORB to use the given |OR-described CORBA abject as an interface repository or name service, respectively.
Values set in this manner are persistent. The code:

(corba: get - pl uggabl e- nbdul e-details orb "InterfaceRepository"
;ior-string)

returnsalist of two values. Thefirst isthe object reference of the given serviceif it is contactable (ni | if itisnot). The
second is the value that has been set using cor ba: set - pl uggabl e- nodul e- det ai | s. Note the the standardized function
op:resol ve_initial _references should be used in application code to obtain the reference, not

cor ba: get - pl uggabl e- nodul e- det ai | s.

Type information corresponding to IDL parsed by the IDL compiler is not added to the interface repository until the
information is needed in response to acall to op: get _i nt er f ace from aclient.

7.4 Error handling in user code called by the server

Error handlers are wrapped around user code called by the POA in response to incoming CORBA requests. By default, an
error is handled and a CORBA exception isreturned to the client.

If the variable cor ba: * or b- st at us- out put * isset to anon-nil value, a backtrace is printed to the given stream
designator.

If the variable cor ba: *poa- br eak- on-error-in-server* isset toanon-nil value, the debugger will be entered. When
the user optsto continue, a CORBA exception will be returned to the client. Note that while debugging is going on, a
synchronous call from aclient will be hanging, waiting for a response.

7.5 Multi-threading

The: t hread_pol i cy keyword argument of op: cr eat e_poa controls the number of threads created. The value can be one
of:

: si ngl e-t hread- nodel

Use the same thread for all requests.

41

7 The LispWorks ORB

;orb-ctrl-nodel Use an ORB specific number of threads.

Aninteger n Usen threads.
Currently the "ORB specific number of threads" is 1, so thisisthe sameas: si ngl e- t hr ead- nodel .

See the Portable Object Adapter specification, available from OMG.

7.6 Object URLs

Object URL s are supported using the cor bal oc and cor bananme schemes. For cor bal oc URLS, theiiop andrir
protocols are supported.

In addition, afi | e schemeis supported, with the absolute file name following the colon, for example
file:/etc/orbroot.

7.7 Specifying the port
By default the LispWorks ORB uses port 3672.

To specify aknown other port, passit viathe ORB initarg - ORBpor t on the command line, for example:

my- cor ba-server -ORBport 12345

To alow the system to choose a port, pass the special value O:

my- cor ba-server -ORBport O

The ORB initarg - | | OPport isan aliasfor - ORBport .

Note: it is possible to run only one ORB instance at atime in LispWorks. So for concurrent LispWorks ORBs, you will need
to run multiple images.

7.8 Specifying the host name in IORs

When an IOR is made by the LispWorks ORB, it contains a host name that will be used by the client to contact the ORB. By
default, this name is generated by calling the C function gethostbyname() with the result of calling (machi ne- i nst ance),
which is often the FQDN of the machine.

If thisis not sufficient, you can control the name that is placed in IORs by using the- | | OPhost and - | | OPnuneri ¢ ORB
initialization options.

When you supply - I | OPhost name, then name specifies the host name directly. Otherwise, if you supply - 1 | OPnuneri c,
then the name is the numeric | P address obtained by reverse lookup of the result of (machi ne-i nst ance) .

You can supply ORB initialization options on the LispWorks command line or in the call toop: orb_ini t.

For example, on the command line:

| i spwor ks-corba-server -11COPnuneric
| i spwor ks-corba-server -11C0Phost 192.168.1.9
| i spwor ks-corba-server -110Phost ny-fqgdn.|ispworks.com

For example, during ORB initialization:

42

7 The LispWorks ORB

(op:orb_init :lispworks-orb '("-11OPnuneric"))
(op:orb_init :lispworks-orb '("-11CPhost" "192.168.1.9"))
(op:orb_init :lispworks-orb

"("-11CPhost" "my-fqdn.lispworks.coni))

The ORB initargs - ORBhost and - ORBnuneri ¢ arealiasesfor - | | OPhost and - | | OPnumer i ¢ respectively.

Appendix A: Common Lisp IDL Binding

Version 1.0 (The RFP for the IDL Common Lisp mapping was agreed by the ORBOS and PTC committees at the OMG
meeting in Washington on 99/01/14.)

This chapter briefly reviews some concepts of IDL and defines the notion of alanguage mapping. A summary of the
IDL/Common Lisp mapping is presented.

A.l Introduction to IDL

IDL, or Interface Definition Language, is alanguage defined by the Object Management Group. The key datatypein IDL is
the interface, which describes the behavior of objects that implement that interface. The IDL definition for an interface
describes all of the operations to which an object that implements that interface can respond. For each such operation, it
describes the allowed types of the parameters to the operation and the allowed type of the value returned by the operation.

IDL alowstypes other than interfaces to be expressed. For example, primitive types such as boolean, severa signed and
unsigned integer types, and some floating point types may be defined.

Constructed types analogous to the C st ruct or Pascal r ecor d type may be defined, and some simpletype diasing is
possible in away analogousto the C t ypedef construct. Arrays and sequences may also be defined.

A.2 How IDL is used

IDL istypically used in the following manner. A server process wishes to make some of its functionality available for
invocation by clients. These clients may not be in the same process, on the same machine, or even written in the same
language.

The server publishes the IDL definitions that define the interfaces of the objectsthat it implements. A client can use those
definitions to invoke operations on objects that reside within the server process.

The syntax used by the client to invoke a method on an object defined in IDL, and the relationship between the data types
specified in IDL and the native datatypes of the language in which the client isimplemented is defined by the mapping of
IDL into that language.

This document describes a mapping from IDL into Common Lisp.

A.3 Mapping summary

The main points of the mapping from IDL to Common Lisp are as follows:
* Primitive data types are mapped to corresponding primitive datatypesin Lisp.
 Struct and union are mapped to classes. Each member of the struct or union can be accessed using a regular syntax.
* Arrays map to arrays.
» Seguences can map either to lists or to vectors; that is, sequences map to sequences.

» Exceptions are mapped to conditions.

Interfaces are mapped to classes, and interfaces that inherit map to classes that inherit.

44

Appendix A: Common Lisp IDL Binding

» Operations on interfaces map to methods on a generic function. This generic function discriminates only on its first
argument, which is then interpreted as the receiver of the operation.

» The modulein which an IDL entity is declared is mapped to the package name of the corresponding symbol. The name
of the symboal isformed from the rest of the scope of the module.

A.4 Mapping in more detalil

This section describes the mapping of IDL into the Lisp language. In most cases examples of the mapping are provided. It
should be noted that the examples are code fragments that try to illustrate only the language construct being described.

A.4.1 Mapping concepts
By an IDL entity we mean an element defined in some IDL file. For example, consider the code fragment:

nmodul e A {

interface B {

void opl(in |ong bar);
b
}

The IDL entities are the module named A, the interface named B, the operation named op1, the formal parameter named bar ,
and the primitive datatypesvoi d and | ong.

Our mapping will associate a corresponding Lisp entity to each IDL entity declared in aan IDL specification. The Lisp entity
corresponding to agiven IDL entity will be said to be generated from the IDL entity.

If the IDL entity has a name, then the corresponding Lisp entity will also have a name. Whereas IDL entities are named by
strings (in other words, identifiers), Lisp entities are named by symbols.

This chapter specifies, for each IDL construct, the Lisp entity, and the name of that entity, that is generated by the mapping.

A.4.2 Semantics of type mapping

The statement that an IDL type | ismapped to aLisp type L indicates that if V isaLisp value whose corresponding IDL type
is 1, then the consequences are not specified if the value of V is not amember of the type L. For example, if Vispassed asa

parameter to an IDL operation or if V isreturned from an IDL operation, then a conforming implementation may reasonably
perform any of the following actionsif V isnot of the type L.

 If V. may be coerced to L, then V may be replaced by the result of coercing V to the type L.

« If V cannot be coerced to L, then an error may be signalled. If the error occurs during marshalling or unmarshalling,
cor ba: mar shal should be signaled.

A.4.3 Mapping for basic types

The following table shows the basic mapping. The first column contains the IDL name of the IDL type to be mapped. Each
IDL type denotes a set of IDL abstract values.

The set of values denoted by an entry in the first column is mapped, under the mapping described in this document, to a set of
Lisp values. That set of Lisp valuesis described in two ways:

Appendix A: Common Lisp IDL Binding

IDL Type Name of Lisp Type Lisp Type Specifier
boolean corba:boolean bool ean
char corba:char character
octet corba:octet (unsigned-byte 8)
string corbastring string
short corba:short (signed-byte 16)
unsigned short corba:ushort (unsigned-byte 16)
long corballong (signed-byte 32)
unsigned long corbaulong (unsigned-byte 32)
float corba:float See text
double corba:double See text

For example:

(typep -3 'corba:short)
> T

(typep "A string" 'corba:string)

> T

A.4.3.1 boolean

The IDL bool ean constants TRUE and FAL SE are mapped to the corresponding Lisp boolean literalst and ni | . Thetype

specifier cor ba: bool ean specifies thistype.

A.4.3.2 char

IDL char mapstotheLisptypechar act er . The type specifier cor ba: char specifiesthistype.

For example:

(typep #\x corba:char)
> T

(typep "x" 'corba:char)
> nil

A.4.3.3 octet

The IDL typeoct et , an 8-bit quantity, is mapped as an unsigned quantity to the type cor ba: oct et . Thetype specifier
cor ba: oct et denotes the set of integers between 0 and 255, inclusive. This set can also be denoted by the type specifier

(unsi gned-byte 8).
For example:

(typep 255 'corba:octet)
> T

(typep -1 'corba:octet)
> nil

46

http://www.lispworks.com/documentation/HyperSpec/Body/t_ban.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_ch.htm

Appendix A: Common Lisp IDL Binding

A.4.3.4 string

TheIDL st ri ng, both bounded and unbounded variants, are mapped to cor ba: st ri ng. Range checking for charactersin
the string as well as bounds checking of the string shall be done at mar shal time. The type specifier cor ba: string
denotes the set of Lisp strings.

For example:

(typep "A string" 'corba:string)
> T

(typep nil 'corba:string)

> nil

A.4.3.5 Integer types

Thei nt eger typeseach maptotheLispi nt eger type. Each IDL i nt eger type has a corresponding type specifier that
denotes the range of integers to which it corresponds.

The names of the type specifiersare cor ba: | ong, cor ba: short, cor ba: ul ong, and cor ba: ushort .

A.4.3.6 Floating point types

The floating point typesf | oat and doubl e map to Lisp types named cor ba: f | oat and cor ba: doubl e, respectively.
These types must be subtypes of thetyper eal . They must allow representation of al numbers specified by the
corresponding CORBA types.

A.4.4 Introduction to named types
We now discuss the mapping of types that are named. We begin with a discussion of terminological issues.

Notation for naming can be confusing, so some careis needed. Our specification is not formally rigorous, but we have tried
toillustrate enough points with examples so that situations likely to arise in practice can be handled.

A.4.4.1 IDL naming terminology

By "the IDL name of an IDL entity", we mean the string that is the simple name of that entity. An IDL entity can be declared
at the top-level or nested inside some other IDL entity. We say that the outer IDL entity encloses the inner one. We will
sometimes elide the quotation marks in describing the names of IDL (and other entities) when no confusion is likely to result.

Hereisan IDL example:

nmodul e A{
interface B{
struct ¢ {long foo;};}:}

The name of the st r uct isthe string c. The name of the interface isthe string B. The name of the module is the string A.
The name of the st r uct member isthe string f oo. The innermost enclosing IDL entity of the st r uct istheinterface
named B. The innermost enclosing module of the struct is the module named A.

A.4.4.2 Lisp naming terminology

In Common Lisp, the name of asymboal is a string used to identify the symbol. Packages are collections of symbols. A
symbol has a home package, which also has aname. A package can be named by a symbol or astring. We sometimes loosely
say "the package X" when we mean "the package named by x".

47

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_real.htm

Appendix A: Common Lisp IDL Binding

A package may have nicknames, and we will consider that the nicknames of a package name the package. Unless otherwise
stated, we will assume that distinct package names refer to distinct packages.

The notation for symbols consists of three concatenated parts. the name of the home package of the symbol, followed by the
character ": ", followed by the name of the symbol. Case is not significant when this notation is used. Thus, al symbols
generated by this mapping are external symbols of their home package.

A symbol can name afunction, a package, aclass, atype, adot, or avariable. These namespaces are digoint. All alphabetic
charactersin the names of symbols used in this document are upper-case unless otherwise stated.

Thus, the names notated here are implicitly converted to uppercase when they name a symbol. For example, when we write
the symbol named
hel | o- goodbye or the symbol hel | o- goodbye, we actually mean the symbol whose name is the string HELLO- GOODBYE.

A.4.5 Distinguished packages
This document will refer to two kinds of packages:
» Thefirst kind are those packages defined explicitly by this specification (this Appendix).
» The second kind consists of those packages created as a result of compiling user IDL code.

Thefirst kind of package consists of these three distinct packages. ther oot package, the cor ba package, and the
oper at i on package.

The names of these packages are described below. The name of ther oot package isthe string " OMG. ORG ROOT" . The name
of the cor ba packageis" OMG ORG CORBA'. The name of the oper at i on package isthe string " OMG. ORG OPERATI ON'.

The precise semantics of these three packages is described below. Informally, ther oot package is the package in which
Common Lisp names corresponding to IDL definitions not contained in atop-level module are interned. The cor ba package
is the package in which Common Lisp names corresponding to IDL definitions and pseudo-1DL definitionsin the CORBA
module are interned. The oper at i on package is the package into which names of Common Lisp functions corresponding to
IDL operations are interned.

In addition, this specification makes use of the standard Common Lisp packages named KEYWORD and COMVON- LI SP.

A.4.5.1 Nicknames for distinguished packages

An implementation is expected to support the addition of nicknames for a package via the standard Common Lisp nicknames
facility. An ORB should support the following default nicknames:

* For the package OMG. ORG CORBA, the default nickname shall be CORBA.
* For the package OMG. ORG OPERATI QN, the default nickname shall be OP.

This document will use these nicknames without comment.

A.4.6 Scoped names and scoped symbols

Many of the Common Lisp entities we consider will be named according to the scoped naming convention described in this
section. In particular, the following entities will be mapped according to this naming convention:

e interface
e uni on

* enum

Appendix A: Common Lisp IDL Binding

e struct

e exception
e const

e typedef

A scoped symbol will be associated with the IDL entity, and it is this scoped symbol that names the Lisp value generated by
the given IDL entity.

A.4.6.1 Definitions
For any named IDL entity | thereisaLisp symbol Scalled the scoped symbol of I. The scoping separator isthe string "'/ .
If | isatop-level module, then the name of Sisthe name of I.

If | isamodule nested within another module J, then the name of Sis the concatenation of the name of the scoped symbol of
J, the scoping separator, and the name of |. The home package of the scoped symbol of amoduleis: keywor d.

Suppose | isanamed IDL entity that is not amodule. The name of the scoping symbol Sof | isdetermined as follows. If the
declaration of | is enclosed inside another IDL entity J that is not a module, then the name of Sisthe concatenation of the
name of the scoping symbol for J, the scoping separator, and the name of |. Otherwise the name of Sisthe name of I.

If I isenclosed in amodule M, then the home package of Sisnamed by the scoped symbol for M. Otherwise the home
package for Sisther oot package.

A.4.6.2 Examples of scoping symbols

First we consider a simple example:

modul e a { interface foo {};}

The scoped symbol of the moduleis: a. Thus, the home package of this symbol is: keywor d and the name of the symbol is
the string A. The scoped symbol of the interface is the symbol a: f oo. Thus, the name of the symbol is the string FOO, and
the home package of the symboal is the package whose name is the string A.

nmodul e a {
interface outer {
struct inner {
in long nenber;
}
s
}

Here the scoped symbol for the moduleis: a, the scoped symbol for the interfaceis a: out er, and the scoped symbol for
struct isa: outer/inner.

nmodul e af
nmodul e b{
interface c{
struct d{
| ong foo;
b
b
b
}

49

Appendix A: Common Lisp IDL Binding

The scoped symbol for thest ruct isa/ b: ¢/ d. The scoped symbol for the st r uct memberisa/ b: ¢/ d/ f oo.

A.4.7 The package prefix pragma

A package_pr ef i x pragma has the form:
#pragma package_prefix string

wherest ring isan IDL string literal. For example, #pr agnma package_prefi x COM LI SPWORKS.

A package_pr ef i x pragma affects the mapping of all top-level modules whose definition textually follows that pragmain
the IDL file. The name of the scoping symbol for such atop-level module is the concatenation of the given
package_pr efi x with the name of the module.

#pragma package_prefix COM LI SPWORKS

nmodul e af
nmodul e b{
interface c{};

};
I

The scoped symbol for the interfaceis COM LI SPWORKS/ A/ B: C.

A.4.8 Mapping for interface

An IDL interface is mapped to aLisp class. The name of this classis the scoped symbol for the interface. The direct
superclasses of a generated Lisp class are determined as follows.

If the given IDL interface has no declared base interfaces, the generated class has the single direct superclass nhamed

cor ba: obj ect . Otherwise, the generated Lisp class has direct superclasses that are the generated classes corresponding to
the declared base interfaces of the given interface. The Lisp value ni | can be passed wherever an object referenceis
expected.

An DL interface is also mapped into server-side classes. The server classes are described in A.6 The mapping of IDL into
Common Lisp servants.

For example, in IDL:

nmodul e exanpl e{
interface foo {};
interface bar {};
interface fum: foo, bar {};

}
And in generated Lisp:

(defcl ass exanpl e: foo(corba: object)())
(defcl ass exanpl e: bar (corba: obj ect) ())
(defcl ass exanpl e: fum (exanpl e: foo exanpl e: bar) ())

A.4.9 Mapping for operation

This section discusses only how the user is to invoke mapped operations, not how the user isto implement them. The
implementation of operationsis discussed in A.6 The mapping of IDL into Common Lisp servants.

50

Appendix A: Common Lisp IDL Binding

An IDL operation is mapped to a Lisp function named by the symbol whose print-name is given by the name of the operation
interned in the oper at i on package.

We will assume that all operation names have been appropriately imported into the current package in the examples.

Thus, when an example is given in which there is areference to the symbol naming the mapped function corresponding to an
IDL operation, the package of that symbol will be assumed to be the operation package. Common Lisp provides a number of
facilities for the implementation of this functionality and for handling name conflicts.

A.4.9.1 Parameter passing modes

The function defined by the IDL operation expects actual arguments corresponding to each formal argument that is declared
i norinout, intheorder in which they are declared in the IDL definition of the operation.

A.4.9.2 Return values

The function defined by the IDL operation returns multiple values. The first value returned is that value corresponding to the
declared return value, unless the declared return valueis void. Following the value corresponding to the declared return
value, if any, the succeeding returned values correspond to the parameters that were declared out andi nout , inthe order in
which those parameters were declared in the IDL declaration.

Note that thisimplies that generated functions corresponding to operations declared void, which have neither out nor i nout
formal parameters, return zero values.

A.4.9.3 oneway

Operations declared oneway are mapped according to the above rules.

A.4.9.4 Efficiency optimization: Using macros instead of functions

A conforming implementation may map an operation to a macro whose hame and invocation syntax are consistent with the
above mapping. For the sake of terminological simplicity, however, this document will continue to refer to mapped
operations as "functions”.

A.4.9.5 exception

An invocation of afunction corresponding to a given IDL operation may result in the certain conditions being signalled,
including the conditions generated by the exceptions declared in ther ai ses clause of the operation, if any. Such conditions
are signalled in the dynamic environment of the caller.

Aninvocation of afunction may also result in the signalling of conditions corresponding to system exceptions.

A.4.9.6 context

If the operation is specified to take a context (using the IDL cont ext clause), the generated operation takes an extra optional
parameter corresponding to acont ext object generated using the normal IDL context manipul ation operations.

For example, in IDL:

nmodul e exanpl e {
interface face {
| ong sanple_nethod (in long arg);
voi d voi dnet hod();
voi d voi dnet hod2(out short arg);

51

Appendix A: Common Lisp IDL Binding

string nethod3 (out short argl,inout string arg2,in boolean arg3)
}
}

In generated Lisp:

(def package : exanpl e)
(defcl ass exanpl e:face (corba: object)())

And in use

; Suppose x is bound to a value of class exanple:face.
(sanpl e_net hod x 3)
> 24

(voi drmet hod x)
> ; No val ues returned

(voi dnet hod2 x)
> 905 ; This is the value corresponding to the out arg

(rmet hod3 x "Argunent corresponding to arg2" T)
> "The val ues returned" -23 "New arg2 val ue"

; The Lisp construct nultiple-value-bind can al so be used
; to recover these val ues
(rmul tiple-value-bind (result argl arg2)
(et hod3 x "Argunent corresponding to arg2" T)
(list result argl arg2))
> ("The val ues returned" -23 "New arg2 val ue")

A.4.10 Mapping for attribute

An attribute is mapped using a naming convention similar to that for operation.

A.4.10.1 readonly attribute

An attribute that is declared with the r eadonl y modifier is mapped to a method whose name is the name of the given
attribute and whose home package isthe oper at i on package.

This method is specialized on the class corresponding to the IDL interface in which the attribute is defined.

A.4.10.2 normal attribute

Attributes that are not declared r eadonl y are mapped to a pair of methods that follow the convention used for default slot
accessors generated by def ¢l ass. Specifically, areader-method is defined whose name follows the convention for
readonl y attributes. A writer is defined whose nameis(setf name) where nane isthe name of the defined

reader - net hod.

For example, in IDL:

nmodul e exanpl e{
interface attributes {
attribute string attril;
readonly attribute long attr2;};}

52

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

Appendix A: Common Lisp IDL Binding

And in use

;; Assune x is bound to an object of class exanple:attributes
(attr2 x)
> 40001

(attrl x)
> " Sanpl e"

(setf (attrl x) "New val ue")
> "New val ue”

(attrl x)
> "New val ue"

A.4.11 Mapping of module
An IDL moduleis mapped to a Lisp package whose name is the name of the scoped symbol for that module.

For example, in IDL:

interface outer_interface {};
nmodul e exanpl e {
interface inner_interface {};
nmodul e nested_i nner_exanple {...
interface nested_inner_interface{};
nmodul e doubly_nested_i nner_exanpl e{...};
}
}

Andin generated Lisp:

(def package : exanpl e)
(def package : exanpl e/ nest ed_i nner _exanpl e)

(def package : exanpl e/ nest ed_i nner _exanpl e/ doubl y_nest ed_i nner _exanpl e)
(defclass ong.root:outer_interface...)
(defcl ass exanpl e:inner_interface ...)

(defcl ass exanpl e/ nest ed_i nner _exanpl e: nest ed_i nner __i nterface..)

A.4.12 Mapping for enum
An IDL enumis mapped to a Lisp type whose name is the corresponding scoped symbol.

Each member of the enumis mapped to a symbol with the same name as that member whose home package is the keyword
package.

For example, in IDL:

nmodul e exanpl e{
enum foo {hello, goodbye, farewell};

b
In generated Lisp:

(def package : exanpl e)
(deftype exanpl e:foo ()
"(nmenber :hello :goodbye :farewell))

53

Appendix A: Common Lisp IDL Binding

And in use

(typep :goodbye 'exanpl e: fo0)
> T

(typep :not-a-nmenber 'exanple:foo)
> nil

A.4.13 Mapping for struct

AnIDL struct ismapped to aLisp type whose name is the corresponding scoped symbol. Each member of the st ruct is
mapped to an initialization keyword, areader, and awriter. The initialization keyword is a symbol whose name is the name
of the member and whose package is the keyword package.

The reader is named by a symbol that follows the conventions for attribute accessors. In the case of areader, its packageis
the operation package, and its name is the name of the member. The writer isformed by using set f on the generalized place
named by the reader.

Thetypecor ba: st ruct issupertype of al such generated types.

An|DL struct hasa corresponding constructor whose name is the same as the name of the mapped Lisp type. This
constructor takes keyword arguments whose package is the keyword package and whose name equals the name of the
corresponding member.

For example, in IDL:

nodul e struct nodul e
struct struct_type {
long fieldl

string field2;

b

b

In generated Lisp:

(def package : structnodul e)
(defstruct structnodul e:struct_type ...)

And a usage example:

(setqg struct (structnodul e:struct_type
:fieldl 100000
:field2 "The val ue of field2"))

(op:fieldl struct)
> 100000

(setf (op:fieldl struct) -500)
> -500

(op:fieldl struct)
> -500

A.4.14 Mapping for union

An DL uni on ismapped to a Lisp type named by the corresponding scoped symbol. Thistype is a subtype of
cor ba: uni on.

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Appendix A: Common Lisp IDL Binding

The value of the discriminator can be accessed using the accessor function named uni on- di scri mi nat or whose home
package isthe oper at i on package and using an initialization argument named : uni on- di scri i nat or.

The value can be accessed using the accessor function named uni on- val ue inthe oper at i on package with initialization
argument : uni on- val ue.

An IDL uni on has a corresponding constructor whose name is the same as the name of the type. This constructor takes two
constructors whose names are :uni on- val ue and : uni on-di scri m nat or.

A.4.14.1 Member accessors
Each uni on member has an associated constructor and accessor.

The symbol-name of the name of the constructor corresponding to a particular member is the concatenation of the name of
the union constructor to the scoping separator to the name of the member. The home package of the name of the constructor
corresponding to a particular member is the home package of the name of the union constructor. A constructor corresponding
to amember takes a single argument, the value of the union. The discriminator is set to the value of the first case label
corresponding to that member.

It isan error if amember reader isinvoked on a union whose discriminator value is not legal for that member. The member
writer sets the discriminator value to the first case label corresponding to that member.

The default member istreated asiif it were a member named def aul t whose case labelsinclude al legal case labelsthat are
not case labels of other membersin the union.

For example, in IDL:

nmodul e exanpl e {
enum enum type {first,second,third,fourth,fifth};
uni on uni on_type switch (enumtype) {
case first: long w n;
case second: short place
case third
case fourth: octet show
defaul t: bool ean ot her;
I
I

In generated Lisp:

(def package : exanpl e)
(defstruct (exanple:union_type ...))

Andinuse

(setqg union
(exanpl e: uni on_type
;union-discrimnator :first
:uni on-val ue -100000))

(op: uni on-val ue uni on)
> -100000

(op: uni on-di scrim nator union)
> : FIRST

(setg sane-union (exanpl e: union_type/w n -100000))

(op: uni on-di scrim nator same-union)
> : FIRST

55

Appendix A: Common Lisp IDL Binding

(setf (op:show sane-union) 3)
> 3

(op: uni on-di scrim nator samne-union)
> :TH RD

(op: show sane- uni on)
> 3

(setf (op:default sanme-union) nil)
> nil

(op: uni on-di scrim nator samne-union)
> :FIFTH

A.4.15 Mapping for const

AnIDL const ismapped to aLisp constant whose name is the scoped symbol corresponding to that const and whose value
is the mapped version of the corresponding value.

For example, in IDL:

nmodul e exanpl e {
const | ong constant = 321

b
And in generated Lisp:

(def package : exanpl e)
(defconstant exanpl e: constant 321)

A.4.16 Mapping for array

AnIDL array ismapped toalisp arr ay of thesamerank. The element type of the mapped array must be a supertype of
the Lisp type into which the element type of the IDL ar r ay is mapped.

Multidimensional IDL arrays are mapped to multidimensional Lisp arrays of the same dimensions.

For example, in IDL:

nmodul e exanpl e {
typedef short arrayl[2];
interface array_interface{
arrayl op()
}
}

In generated Lisp:

(def package : exanpl e)
(deftype exanmple:arrayl () '(array t (2)))

mappi ng for the interface..
(defcl ass exanpl e:array_interface...)

And in use

56

http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm

Appendix A: Common Lisp IDL Binding

(setq a2 (op x)) ; Get an array

(aref a2 1) ; Access an el enent
> 3 ; Just an exanple, could be any value that is a short

A.4.17 Mapping for sequence

An IDL sequenceis mapped to a Lisp sequence. Bounds checking shall be done on bounded sequences when they are
marshaled as parametersto IDL operations. An implementation is free to specify the type of the mapped list more
specifically.

Suppose fooisan IDL datatype and let L be the corresponding Lisp type. This means that anywhere a parameter of type
sequence<foo> is expected, either avector (all of whose elements are of type L) or alist (all of whose elements are of type
L) may be passed.

Conversealy, when such a sequence is returned from an operation invocation, the LispWorks ORB will always return avaue
of typevect or .

For example, in IDL:

nmodul e exanpl e {
typedef sequence< | ong > unbounded_dat a
interface seq{

bool ean param.is_valid(in unbounded_data arg);
3

}

And in generated Lisp:

(def package : exanpl e)
(defun unbounded_data_p (sequence)
(and (typep sequence 'sequence)
(every #' (Il anbda(elt)
(typep elt 'corba:long)))))
(deftype exanpl e: unbounded_dat a()
'(satisfies unbounded_dat a-p))

Let x be an object of type exanple: seq
(param.is_valid x '(-2 3))
> T

(param.is_valid x #(-200 33))
>T

A.4.18 Mapping for exception

Each IDL exception is mapped to a Lisp condition whose name is the scoped symbol for that exception. User exceptions
inherit from acondition named cor ba: user excepti on. And except i on isasubclassof seri ous-condi ti on.

System exceptions inherit from a condition named cor ba: syst enexcepti on.

Both cor ba: user except i on and cor ba: syst emexcept i on inherit from the condition cor ba: except i on.

57

http://www.lispworks.com/documentation/HyperSpec/Body/a_vector.htm
http://www.lispworks.com/documentation/HyperSpec/Body/e_seriou.htm

Appendix A: Common Lisp IDL Binding

A.4.19 User exception

The reader functions and initialization arguments for a condition generated by an IDL exception follow the convention for the
mapping of IDL structs. For example:

nmodul e exanpl e {
exception exl { string reason; };

h

; generated Lisp

(def package : exanpl e)

(define-condition exanpl e: exl (corba: userexception)
((reason :initarg :reason ...)))

Usage exanpl e
(error (exanple:exl :reason "Exanmple of condition"))

A.4.20 System exception

The standard IDL system exceptions are mapped to Lisp conditions that are subclasses of cor ba: syst emexcepti on. Such
generated conditions have reader-functions and initargs consistent with the IDL definition of these exceptions.

A.4.21 Mapping for typedef

IDL t ypedef ismapped to aLisp type whose hame is the scoped symbol corresponding to that typedef. This name of this
type denotes the set of Lisp values that correspond to the Lisp type that is generated by the mapping of the IDL type to which
the typedef corresponds.

However, it is not required to perform recursive checking of the contents of constructed typeslikear r ay, sequence, and
struct.

For example, in IDL:

nmodul e exanpl e{

typedef unsigned | ong foo;
typedef string bar;

b

In generated Lisp:

(def package : exanpl e)
(deftype exanpl e:foo () 'corba: ul ong)
(deftype exanpl e: bar() 'corba:string)

And in use

(typep -3 'exanpl e: foo)

> nil

(typep 6000 'exanpl e: bar)

> nil

(typep "hello" 'exanpl e: bar)
>T

58

Appendix A: Common Lisp IDL Binding

A.4.22 Mapping for "any"

The IDL type any represents an IDL entity with an associated typecode and value. It is mapped to the type cor ba: any,
which encompasses al Lisp values with a corresponding typecode.

A.4.23 Constructors

The constructor cor ba: any takes two keyword arguments named any- val ue and any- t ypecode. If any-t ypecode is
specified, then any- val ue must be specified. If any- val ue and any-t ypecode are each specified, then any- val ue must
be a member of the type denoted by any-t ypecode.

Anany may also be created with the invocation:

(corba: any :any-typecode val :any-val ue type)

A.4.24 The deduced typecode
The actual typecode of aLisp valuev is defined as follows:
« If thevalueisan integer, thencor ba: _tc_| ong.
* If thevalueisatypecode, thencorba: _tc_t ypecode.
« If thevalueis of type cor ba: obj ect , then the typecode of the corba object reference.
* If thevalueisasingle-float, then corba: _tc_fl oat.
* |f thevalueisadouble-float, thencorba: tc_doubl e.
* If thevalueisasymbol of typeni | ort, thencorba: _tc_bool ean.
 |f thevaueisacharacter, thencorba: tc_char.
* If thevalueisan any, thencor ba: _tc_any.
« If thevalueisastructure, exception, or union, then the relevant type from the IDL.

 If thevalueisastring, thencor ba: _t c_st ri ng (an unbounded string).

A.4.25 Mapping overview

The detailed mapping guidelines for specific typesis designed to conform to a small set of uniform principles.

A.4.25.1 Rule 1: How names of types are formed

If an IDL identifier | names atype at the top level of some module named M, then the corresponding Lisp typeisnamed M |,
that is, the symbol in package M whose hameisthe string "1".

Nested types are separated by the character "/ ". Thus, if there is another type J defined within the scope of the type named
by I, the corresponding Lisp symbol isM 1/ J. Thisretains consistency with the way in which repository I1Ds are formed.

59

Appendix A: Common Lisp IDL Binding

A.4.25.2 Rule 2: How names of operations are formed

Therulefor oper at i on package mapping issimpler: al symbolsthat correspond to Lisp functions that correspond to IDL
operations are interned in a single package. This package can be denoted by "OP". Thus, op: f oo denotes the operation
named f oo.

A.4.25.3 Rule 3: Lisp functions corresponding to IDL types

IDL defines many kinds of types. unions, structs, interfaces, and exceptions. We can think of each of these types, informally,
as denoting entities with named dlots. For example, the named slots of ast r uct, uni on, or except i on areits members;
the named dotsof ani nt er f ace areits attributes.

For each IDL type, there is an associated constructor function that creates a value of that type and there are accessors for each
member.

The constructor function corresponding to atypeisidentical to the (fully scoped) name of the type. It takes keyword
initiali zation arguments whose names are the names of the named members of that type; these initialize the given members.

Each named slot defines two accessor functions. areader and awriter. The reader has the same name as the named slot. The
writer usesthe standard (set f nane) convention familiar to Lisp users. Of course, the home package of the reader is, as
for all such function names, the package OP.

Note: In applying Rule 3, remember that not all of the associated functions make sense for al of the types. For example,
there is obviously no constructor function defined for an interface, nor are there writer functions defined for attributes
declared readonly.

A.5 Mapping pseudo-objects to Lisp

Pseudo-objects are constructs whose definition is usually specified in IDL, but whose mapping is language specified. A
pseudo-object is not (usually) aregular CORBA object.

A pseudo-object differs from aregular CORBA object in the following ways:
* Itisnot represented in the Interface Repository.
* |t may not be passed as a parameter to an operation expecting a CORBA object.
* It may not be returned asa CORBA Object.
* |t may not be stored in an any.
* If itisrepresented as aclass, it may not be safely subclassed by user code.

We have chosen the option allowed in the IDL specification to define st at us asvoi d and have eliminated it for the
convenience of Lisp programmers.

Each of the standard IDL pseudo-objects is mapped according to the trandation rules just defined.

A.5.1 Narrowing

In line with the other language binding, we define an operation for narrowing an object reference. The code:
(op: narrow cl ass-synbol object-refence)
attempts to narrow the given object reference into an object of the named client-side class.

For example, to narrow an client-side value stored in account - r ef , into an object of type

60

Appendix A: Common Lisp IDL Binding

Banki ngdeno: Checki ngaccount :

(when (op:1s_a account-ref
(op:id Banki ngdeno: _Tc_Checki ngaccount))
(setf account-ref
(op: narrow ' Banki ngdeno: Checki ngaccount account-ref)))

A.5.2 Typecodes for parsed IDL

Parameters holding the typecode value are generated for all parsed IDL types. If the IDL parser generates a Lisp type of
name A: B, then the typecode of the given type is available in the parameter A: _TC B.

For example, the IDL code:

nmodul e exanple { interface array_interface{}};

leads to the definition of a parameter:

exanple: tc_array_interface
with:

(op: kind exanple: _tc_array_interface)
> tk_objref

A.6 The mapping of IDL into Common Lisp servants

This section discusses how implementations create and register objects with the ORB run time system.

A.6.1 Mapping of native types

Specifically, the native type Por t abl eSer ver : : Ser vant is mapped to the Lisp class named
Por t abl eSer ver : Ser vant Base. The nativetype Por t abl eSer ver : : Servant Locat or : : Cooki e can takeany Lisp
vaue.

A.6.2 Implementation objects

An interface corresponding to a class named by a Lisp symbol swith package p and name n may be implemented by
extending the class named by the symbol whose package is p and whose name is the concatenation of n to the string
" - SERVANT" .

If the interface has no base interfaces, then the associated skeleton class has as direct superclasses the class corresponding to
the class named por t abl eser ver: Ser vant Base.

Otherwise, if the interface has base interfaces named A, B, C, and so forth, then its associated servant class has as direct
superclasses the class corresponding to the servant classes corresponding to A, B, C, and so forth.

Attributes in an interface generate slots of the corresponding name in the OP package, together with server-side accessor
methods.

61

Appendix A: Common Lisp IDL Binding

A.6.3 Defining methods

The only portable way to implement an operation on a servant classisto usethe cor ba: def i ne- net hod macro. The syntax
of cor ba: def i ne- et hod isintended to follow the syntax of the Lisp cl : def net hod macro as closely as possible.

The syntax of cor ba: def i ne- met hod isasfollows:

cor ba: defi ne-met hod function-name {nmethod-qualifier}* |anmbda-list

fornt
function-nane:: = {operation-name | (setf operation-nane)}
oper ati on-nane:: synbol
met hod-qualifier::={:before | :after | :around}
cor ba-speci ali zed-1anbda-list ::= setf-|anbda-1list

| normal -1 anbda-1i st

setf-lanbda-list ::= (argunent-specifier receiver-specifier)
normal -1 anbda-list ::= (receiver-specifier {paranmeter-specifier}* context-identifier)

context-identifier ::
receiver-specifier ::

synbol
(recei ver-nane receiver-cl ass)

recei ver-name ::= synbol
receiver-class ::= synbol
par amet er - speci fier ::= synbol

Thiscor ba: def i ne- met hod macro is used to implement an operation on an interface. oper at i on- nane isasymbol
whose name is the name either of an operation or of an attribute declared in an IDL interface implemented by the class named
by the symbol r ecei ver - cl ass.

The number of par aret er - speci fi ers listedinthenor mal - | anbda- I i st must equal the combined number of i n and
i nout parameters declared in the signature of the operation denoted by thef unct i on- nane, or 0 if the operationisan
attribute. If thef uncti on- nane isalist whosecar isset f, the corresponding oper at i on- nanme should name an attribute
that is not readonly.

If function-name denotes an operation, then the effect of

cor ba: def i ne- met hod isto inform the ORB that requests for the operation on instances of the classr ecei ver - cl ass
should return the value or values returned by the body forms of the def i ne- et hod macro, executed in a new lexical
environment in which each par anet er - speci fi er isbound to the actual parameters and in which the

cont ext-identifier isbound tothe value of the corresponding context.

The operation of cor ba: def i ne- net hod in the casein which f unct i on- name names an attribute is analogous. The
behavior of auxiliary specifiers and of dispatch is the same as their corresponding action under defmethod. Attribute
accessors will be generated automatically and inherited by subclasses of the servant classes; the methods can be overridden
by user definitions.

Note that the syntax of cor ba: def i ne- net hod isastrict subset of that of def net hod: every legal

cor ba: def i ne- met hod invocation is also alegal def met hod invocation. The main difference between them is that

cor ba: def i ne- met hod only allows specialization on the first argument. An implementation is free to extend the syntax of
cor ba: def i ne- met hod, for example, to alow type-checking, interlocking, or multiple dispatch.

A.6.3.1 Example: A Named Grid

The first example shows how one might encapsulate a named grid, which isagrid of strings.

Thisisthe IDL of the interface to anamed grid of strings:

nodul e exanpl e{
interface named_gri d{
readonly attribute string nane;
string get_value (in unsigned short row,
in unsigned short colum);
voi d set_value (in unsigned short row,

62

http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_car_c.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

Appendix A: Common Lisp IDL Binding

i n unsigned short colum,
in string value);
}
}

The IDL compiler might generate a class corresponding to the exanpl e: : named_gr i d interface using code something like
this:

(def package : exanpl e)
(defcl ass exanpl e: naned_gri d(corba: object)())

A.6.3.2 Example: A Servant Class

In order to implement the IDL interface in the previous example, the user would extend the class
exanpl e: named_gri d- servant.

Sanpl e inplenmentati on of naned_grid
(defclass grid-inplenentation (exanple:naned_grid-servant)
((grid :initarg :grid
initform (make-array '(2 3) :initial-element "Init")))

The attribute in the IDL will cause the classto have adot op: name with the appropriate accessors specializing on the class.

A.6.3.3 Implementation of the IDL operations

Thecor ba: defi ne- met hod macro is used to define the methods that implement each of the operations defined in the IDL
interface. These implementations do not perform any of the argument or range checking that a production system would, of
course, perform.

The implementation is free to define other methods on the class, including print-object methods and auxiliary methods for
initialize-instance.

(corba: defi ne-nmet hod get _val ue ((the-grid grid-inplenentation)
row col um)
(aref (slot-value the-grid 'grid) row colum))

(corba: define-nethod set_value ((the-grid grid-inplementation)

row col um val ue))
(setf (aref the-grid row colum) val ue))

63

http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

| ndex

A

account interface 4.1.1: IDL for the account interface 19
account frames

initializing and exiting 5.4.1: Initializing and exiting account frames 26
any A.4.22: Mapping for "any" 59
applications

buildingandtesting 2.1.6: Building and testing the application 14
array A4.16: Mapping for array 56
attribute A4.10: Mapping for attribute 52
attributes

mapping for 4.3.3: Mapping for attributes 22

readonly A.4.10.1: readonly attribute 52

B

bank interfface 4.1.3: IDL for thebankinterface 20
bank client 5.1: Theclient 24
Bank example
about 3.1: About the bank example 17
location of sourcecode 3.2: Whereto find the example code 17
bank server 6.1: Theserver 32
implementing 6.4: Implementing the bank server 34
basictypes A.4.3: Mapping for basictypes 45
bool ean A4.3.1: boolean 46
building and testing applications ~ 2.1.6 : Building and testing the application 14

building the bank client and server ~ 3.3: Building the bank client and server 17

C
callbacks
defining 5.4.2: Defining the callbacks 27
char A432: char 46
checki ngAccount interface 4.1.2: IDL for the checkingAccount interface 20
Common Lisp
mapping IDL to 4.3: Mapping IDL to Common Lisp 22
compiling IDL for CORBA applications 4.2: Compiling IDL for a CORBA application 21
configuring
interface repository ~ 7.3: Configuring a name service and an interface repository 40

nameservice 7.3: Configuring a name service and an interface repository 40

64

Index

const A.4.15: Mapping for const 56
constructors ~ A.4.23: Constructors 59
cont ext A4.96: context 51
CORBA
examples 1.4: CORBA examples 9
modules 7.1: The CORBA modules 40
overview 1.1: About CORBA 8

D
debugging 7.4: Error handling in user code called by the server 41
deduced typecode A.4.24: The deduced typecode 59
defining
callbacks 5.4.2: Defining the callbacks 27
interfaces 2.1.1: Definingtheinterface 10, 5.4: Defining theinterfaces 25
methods A.6.3: Defining methods 62
utilities for sharing an object reference 2.1.3: Defining utilities for sharing an object reference 11
definitions A.4.6.1: Definitions 49
defsystem
Hello World sourcecode 2.2.2: The complete defsystem source code 15
designingIDL 4.1: DesigningthelDL 19
distinguished packages ~ A.4.5: Distinguished packages 48, A.4.5.1: Nicknames for distinguished packages 48

E
efficiency optimization
using macros instead of functions A.4.9.4: Efficiency optimization: Using macrosinstead of functions 51
enum A4.12: Mapping for enum 53
error handling
user code called by theserver 7.4 Error handling in user code called by the server 41
exampleof anamed grid A.6.3.1: Example: ANamed Grid 62
exampleof aservant class A.6.3.2: Example: A Servant Class 63
examples of scoping symbols ~ A.4.6.2: Examples of scoping symbols 49
exception A495: exception 51, A4.18: Mapping for exception 57
exceptions
mapping for 4.3.5: Mapping for exceptions 23

exiting account frames 5.4.1: Initializing and exiting account frames 26

F
first object reference

obtaining initial POA object and registering 6.4.3: Obtaining theinitial POA object and registering thefirst object reference 38
floating point types ~ A.4.3.6: Floating point types 47

G
generating

stub and skeleton code from IDL~ 2.1.2: Generating the stub and skeleton code fromIDL 11

65

Index

GUI

implementing bank client's 5.3: Implementing the bank client'sGUI 24

H

HelloWorld 2.1: A CORBA-based HelloWorld 10

complete sourcecode 2.2: Complete source code for the Hello World example 14
host nameinIORs 7.8: Specifying the host namein IORs 42

how IDL isused A2: HowIDLisused 44

I
IDL
account interface 4.1.1: IDL for the account interface 19
bank interface 4.1.3: IDL for the bank interface 20
checki ngAccount interfface 4.1.2: IDL for the checkingAccount interface 20
designing 4.1: DesigningthelDL 19
generating stub and skeleton code 2.1.2: Generating the stub and skeleton code fromIDL 11
howitisused A.2: HowIDLisused 44
introduction Al: Introductionto IDL 44
parsing into stubs and skeletons 7.2 Parsing IDL into stubs and skeletons 40
terminology A4.4.1: IDL naming terminology 47
IDL operations
implementation A.6.3.3: Implementation of the IDL operations 63
IDL types
corresponding Lisp functions A.4.25.3: Rule3: Lisp functions corresponding to IDL types 60
implementation objects ~ A.6.2: Implementation objects 61
implementation of IDL operations A.6.3.3: Implementation of the IDL operations 63
implementing
bank client GUI 5.3: Implementing the bank client'sGUI 24
bank server 6.4: Implementing the bank server 34
CORBA objects on the server 6.2 : Implementing CORBA objects on the server 32
helloworldclient 2.1.4: Implementing theclient 12
helloworld server 2.1.5: Implementing the server 13
servant classes 6.4.1: Implementing the servant classes 34
servant methods 6.4.2: Implementing the servant methods 35
initializing
account frames 5.4.1: Initializing and exiting account frames 26
theORB 5.4.3: Initializing the ORB and obtaining the first object reference 30
Initial References 7.3.1: Configuring viainitial references 41
integer types A4.3.5: Integer types 47
interface A4.8: Mappingfor interface 50
interface repository

configuring 7.3: Configuring a name service and an interface repository 40

66

Index

interfaces

defining 2.1.1: Definingtheinterface 10, 5.4: Defining theinterfaces 25

mapping for 4.3.2: Mapping for interfaces 22
IORfile 2.1.3: Defining utilities for sharing an object reference 11, 2.2.3: The complete source code for the file transfer of the IOR
IOR hostname ~ 7.8: Specifying the host namein IORs 42

L
Lisp functions
corresponding to IDL types A.4.25.3: Rule 3: Lisp functions corresponding to IDL types 60
LispWorks ORB
about 1.2: About the Lisp\WorksORB 8
features 1.3: Features of the Lisp\WorksORB 9
location
of Bank examplecode 3.2: Whereto find the example code 17

of Hello World examplecode 2.2 : Complete source code for the Hello World example 14

M
mapping
any A4.22: Mapping for "any" 59
array A.4.16 : Mapping for array 56
attribute A4.10: Mapping for attribute 52
attributes 4.3.3: Mapping for attributes 22
basictypes 4.3.1: Mappingfor basictypes 22, A.4.3: Mapping for basictypes 45
const A.4.15: Mapping for const 56
details A.4: Mappingin moredetail 45
enum A4.12: Mapping for enum 53
exception AA4.18: Mapping for exception 57
exceptions 4.3.5: Mapping for exceptions 23
how names of operationsareformed A.4.25.2: Rule2: How names of operationsareformed 60
how names of typesareformed A.4.25.1: Rulel: How names of typesareformed 59
IDL into Common Lisp servants A.6: The mapping of IDL into Common Lisp servants 61
IDL to CommonLisp 4.3: Mapping IDL to Common Lisp 22
interface A4.8: Mappingfor interface 50
interffaces 4.3.2: Mapping for interfaces 22
Lisp functions corresponding to IDL types A.4.25.3: Rule 3: Lisp functions corresponding to IDL types 60
nmodul e A.4.11: Mapping of module 53
nativetypes A.6.1: Mapping of native types 61
operation A49: Mapping for operation 50
operations 4.3.4: Mapping for operations 22
overview A.4.25: Mapping overview 59
pseudo-objectstoLisp A.5: Mapping pseudo-objectsto Lisp 60
sequence A4.17: Mapping for sequence 57
struct A.4.13: Mapping for struct 54

67

15

Index

summary A.3: Mapping summary 44

typedef A4.21: Mapping for typedef 58

uni on A4.14: Mapping for union 54
member accessors A.4.14.1: Member accessors 55
methods

defining A.6.3: Defining methods 62
nodul e A4.11: Mapping of module 53
modules

CORBA 7.1: The CORBA modules 40
Multi-threading ~ 7.5: Multi-threading 41

N
namedtypes A.4.4: Introductionto namedtypes 47
names
scoped A4.6: Scoped names and scoped symbols 48
name service
configuring 7.3 Configuring a name service and an interface repository 40
narrowing an object reference A5.1: Narrowing 60
native types
mapping A.6.1: Mapping of nativetypes 61
nicknames for distinguished packages ~ A.4.5.1: Nicknames for distinguished packages 48

O

object reference
defining utilitiesfor sharing ~ 2.1.3: Defining utilities for sharing an object reference 11
narrowing AS5.1: Narrowing 60
obtaining first ~ 5.4.3: Initializing the ORB and obtaining the first object reference 30
Object URL 7.6: Object URLs 42
octet A4.33: octet 46
oneway A493: oneway 51
operation A.4.9: Mapping for operation 50
operations 4.3.4: Mapping for operations 22
ORB
initializing 5.4.3: Initializiing the ORB and obtaining the first object reference 30
ORB initargs
-IIOPhost 7.8 Specifying the host namein IORs 42
-IIOPnumeric ~ 7.8: Specifying the host namein IORs 42
-lIOPport 7.7 : Specifying the port 42
-ORBDefaultInitRef 7.3.1: Configuring via initial references 41
-ORBhost 7.8: Specifying the host namein IORs 43
-ORBInitRef ~ 7.3.1: Configuring viainitial references 41
-ORBnumeric 7.8: Specifying the host namein IORs 43
-ORBport 7.7: Secifying theport 42

68

Index

P
package_prefi x pragma A.4.7: Thepackage prefix pragma 50
packages
distinguished A.4.5: Distinguished packages 48
parameter passing modes A.4.9.1: Parameter passing modes 51
parsing IDL into stubs and skeletons 7.2 Parsing IDL into stubs and skeletons 40
PIDL 6.2: Implementing CORBA objectson the server 32
POA object
Multi-threading 7.5: Multi-threading 41
obtaining initial 6.4.3: Obtaining the initial POA object and registering the first object reference 38
port
specifying 7.7 : Specifying theport 42
Portable Object Adapter (POA) 6.2 Implementing CORBA objectson the server 32
pseudo IDL (PIDL) 6.2: Implementing CORBA objectson the server 32
pseudo-obj ects

mapping A.5: Mapping pseudo-objectsto Lisp 60

R
readonly attributes ~ A.4.10.1: readonly attribute 52
registering
first object breference 6.4.3: Obtaining theinitial POA object and registering the first object reference 38
returnvalues A4.9.2: Returnvalues 51

running server and client 3.4: Running the server and client 18

S
scoped names and scoped symbols ~ A.4.6: Scoped names and scoped symbols 48

scoping symbols
examples A.4.6.2: Examples of scoping symbols 49
semantics of typemapping A.4.2: Semantics of type mapping 45
sequence A4.17: Mapping for sequence 57
servant classes
implementing 6.4.1: Implementing the servant classes 34
servant methods
implementing 6.4.2: Implementing the servant methods 35
servants
IDL into Common Lisp A.6: Themapping of IDL into Common Lisp servants 61
server
bank 6.1: Theserver 32
implementing 2.1.5: Implementing the server 13
implementing CORBA objects ~ 6.2: Implementing CORBA objectson the server 32
multipleservers 7.7 . Specifyingtheport 42

running 3.4: Running the server and client 18

69

Index

sharing an object reference 2.1.3: Defining utilities for sharing an object reference 11
skeleton code

generating from IDL ~ 2.1.2: Generating the stub and skeleton code fromIDL 11
skeletons

parsing IDL into 7.2 Parsing IDL into stubs and skeletons 40
source code

Bank example 3.2: Whereto find the example code 17

Hello World example 2.2: Complete source code for the Hello World example 14
string A4.34: string 47
struct A4.13: Mapping for struct 54
stub code

generating from IDL ~ 2.1.2: Generating the stub and skeleton code fromIDL 11
stubs

parsing IDL into 7.2 Parsing IDL into stubs and skeletons 40
symbols

examples of scoping A.4.6.2: Examples of scoping symbols 49

scoped A.4.6: Scoped names and scoped symbols 48
system exception A.4.20: Systemexception 58

T
terminology
IDL A4.4.1: IDL naming terminology 47
typecode
deduced A.4.24: Thededuced typecode 59
typecodes for parsed IDL A5.2: Typecodesfor parsed IDL 61
t ypedef A.4.21: Mapping for typedef 58
type mapping
semantics A.4.2: Semantics of type mapping 45
types
basictypes 4.3.1: Mapping for basictypes 22
integer A4.35: Integer types 47
named types A.4.4: Introduction to named types 47
nativetypes A.6.1: Mapping of nativetypes 61

U

uni on AA4.14: Mapping for union 54
user exceptions A4.19: User exception 58
utilities

for sharing an object reference 2.1.3: Defining utilities for sharing an object reference 11

70

	Developing Component Software with CORBA®
	Copyrights and Trademarks
	Contents
	Preface
	1 Common Lisp and CORBA
	1.1 About CORBA
	1.2 About the LispWorks ORB
	1.3 Features of the LispWorks ORB
	1.4 CORBA examples

	2 Quick Start Tutorial
	2.1 A CORBA-based Hello World
	2.1.1 Defining the interface
	2.1.2 Generating the stub and skeleton code from IDL
	2.1.3 Defining utilities for sharing an object reference
	2.1.4 Implementing the client
	2.1.5 Implementing the server
	2.1.6 Building and testing the application

	2.2 Complete source code for the Hello World example
	2.2.1 The complete interface source code
	2.2.2 The complete defsystem source code
	2.2.3 The complete source code for the file transfer of the IOR
	2.2.4 The complete Hello World client source code
	2.2.5 The complete Hello World server source code

	3 Setting up the Bank Example
	3.1 About the bank example
	3.2 Where to find the example code
	3.3 Building the bank client and server
	3.4 Running the server and client

	4 Writing and Compiling IDL
	4.1 Designing the IDL
	4.1.1 IDL for the account interface
	4.1.2 IDL for the checkingAccount interface
	4.1.3 IDL for the bank interface

	4.2 Compiling IDL for a CORBA application
	4.3 Mapping IDL to Common Lisp
	4.3.1 Mapping for basic types
	4.3.2 Mapping for interfaces
	4.3.3 Mapping for attributes
	4.3.4 Mapping for operations
	4.3.5 Mapping for exceptions

	5 The Bank Client
	5.1 The client
	5.2 The client's perspective
	5.3 Implementing the bank client's GUI
	5.4 Defining the interfaces
	5.4.1 Initializing and exiting account frames
	5.4.2 Defining the callbacks
	5.4.3 Initializing the ORB and obtaining the first object reference

	6 The Bank Server
	6.1 The server
	6.2 Implementing CORBA objects on the server
	6.3 The server's perspective
	6.4 Implementing the bank server
	6.4.1 Implementing the servant classes
	6.4.2 Implementing the servant methods
	6.4.3 Obtaining the initial POA object and registering the first object reference

	7 The LispWorks ORB
	7.1 The CORBA modules
	7.2 Parsing IDL into stubs and skeletons
	7.3 Configuring a name service and an interface repository
	7.3.1 Configuring via initial references
	7.3.2 Persistent configuration

	7.4 Error handling in user code called by the server
	7.5 Multi-threading
	7.6 Object URLs
	7.7 Specifying the port
	7.8 Specifying the host name in IORs

	Appendix A: Common Lisp IDL Binding
	A.1 Introduction to IDL
	A.2 How IDL is used
	A.3 Mapping summary
	A.4 Mapping in more detail
	A.4.1 Mapping concepts
	A.4.2 Semantics of type mapping
	A.4.3 Mapping for basic types
	A.4.3.1 boolean
	A.4.3.2 char
	A.4.3.3 octet
	A.4.3.4 string
	A.4.3.5 Integer types
	A.4.3.6 Floating point types

	A.4.4 Introduction to named types
	A.4.4.1 IDL naming terminology
	A.4.4.2 Lisp naming terminology

	A.4.5 Distinguished packages
	A.4.5.1 Nicknames for distinguished packages

	A.4.6 Scoped names and scoped symbols
	A.4.6.1 Definitions
	A.4.6.2 Examples of scoping symbols

	A.4.7 The package_prefix pragma
	A.4.8 Mapping for interface
	A.4.9 Mapping for operation
	A.4.9.1 Parameter passing modes
	A.4.9.2 Return values
	A.4.9.3 oneway
	A.4.9.4 Efficiency optimization: Using macros instead of functions
	A.4.9.5 exception
	A.4.9.6 context

	A.4.10 Mapping for attribute
	A.4.10.1 readonly attribute
	A.4.10.2 normal attribute

	A.4.11 Mapping of module
	A.4.12 Mapping for enum
	A.4.13 Mapping for struct
	A.4.14 Mapping for union
	A.4.14.1 Member accessors

	A.4.15 Mapping for const
	A.4.16 Mapping for array
	A.4.17 Mapping for sequence
	A.4.18 Mapping for exception
	A.4.19 User exception
	A.4.20 System exception
	A.4.21 Mapping for typedef
	A.4.22 Mapping for "any"
	A.4.23 Constructors
	A.4.24 The deduced typecode
	A.4.25 Mapping overview
	A.4.25.1 Rule 1: How names of types are formed
	A.4.25.2 Rule 2: How names of operations are formed
	A.4.25.3 Rule 3: Lisp functions corresponding to IDL types

	A.5 Mapping pseudo-objects to Lisp
	A.5.1 Narrowing
	A.5.2 Typecodes for parsed IDL

	A.6 The mapping of IDL into Common Lisp servants
	A.6.1 Mapping of native types
	A.6.2 Implementation objects
	A.6.3 Defining methods
	A.6.3.1 Example: A Named Grid
	A.6.3.2 Example: A Servant Class
	A.6.3.3 Implementation of the IDL operations

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U

