COM/Automation User Guide and
Reference Manual

Version 8.0

Copyright and Trademarks

COM/Automation User Guide and Reference Manual
Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in aretrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and K nowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in al copies and supporting documentation, and that the
name of M.1.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "asis’
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including al implied
warranties of merchantability and fitness. In no event shall M.I.T. beliable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of |CU software obtained from http://source.icu-project.org and which bears the following copyright
and permission natice:

ICU License- ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.

Permission is hereby granted, free of charge, to any person abtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission naotice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "ASIS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THISNOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright and Trademarks

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and

registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights

The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt 111, as applicable. Rights reserved under the copyright laws of

the United States.

Address

Telephone

Fax

LispWorks Ltd

St. John's Innovation Centre
Cowley Road

Cambridge

CB4 0WS

England

From North America
877 759 8839 (toll-free)

From elsawhere;
+44 1223 421860

From North America
617 812 8283

From elsawhere:
+44 870 2206189

www.lispwor ks.com

www.lispworks.com

Contents

Preface 8

1 Using COM 10

1.1 Prerequisites 10

1.2 Including COM in aLisp application 10

1.3 The mapping from COM names to Lisp symbols
1.4 Initializing the COM runtime 12

1.5 Obtaining the first COM interface pointer 12
1.6 Reference counting 12

1.7 Querying for other COM interface pointers 12
1.8 Calling COM interface methods 12

1.9 Implementing COM interfacesin Lisp 18
1.10 Calling COM object methods from Lisp 24

2 COM Reference Entries 27

add-ref 27
automation-server-command-line-action 28
automation-server-main 28
automation-server-top-loop 30
call-com-interface 31
call-com-object 32
check-hresult 34
co-create-guid 34
co-initialize 35

com-error 36

com-interface 37
com-interface-refguid 38
com-object 38

com-obj ect-destructor 39
com-object-from-pointer 40
com-object-initialize 41
com-object-query-interface 41
co-task-mem-alloc 42
co-task-mem-free 43
co-uninitialize a4
create-instance 45
define-com-implementation 46

11

Contents

define-com-method 48
find-clsid 49
get-object 50

guid-equal 51
guid-to-string 52

hresult 53

hresult-equal 53

interface-ref 54

i-unknown 55
make-factory-entry 55
make-guid-from-string 56
midl 57
midl-default-import-paths 59
:midl-file 60
midl-set-import-paths 60
guery-interface 61
guery-object-interface 62
refguid 63
refguid-interface-name 63
refiid 64
register-class-factory-entry 65
register-server 66

release 67

server-can-exit-p 67
server-in-use-p 67

set-automation-server-exit-delay
set-register-server-error-reporter
s ok 70
standard-i-unknown 71
start-factories 72
stop-factories 72
succeeded 73
unregister-server 74
with-com-interface 75
with-com-object 76
with-query-interface 77
with-temp-interface 78

3 Using Automation 80

3.1 Including Automation in a Lisp application

68
69

3.2 Starting aremote Automation server

3.3 Calling Automation methods

81

81

3.4 Implementing Automation interfacesin Lisp

3.5 Examples of using Automation

86

80

84

Contents

4 Automation Reference Entries 87

call-dispatch-get-property 87
call-dispatch-method 88
call-dispatch-put-property 89
com-dispatch-invoke-exception-error 20
com-dispatch-invoke-exception-error-info 91
com-obj ect-dispinterface-invoke 92
create-instance-with-events 93
create-object 94
define-automation-collection 95
define-automati on-component 96
define-dispinterface-method 98
disconnect-standard-sink 100
do-collection-items 100
do-connections 101
find-component-tlb 102
find-component-value 103
get-active-object 105

get-error-info 106
get-i-dispatch-name 107
get-i-dispatch-source-names 108
i-dispatch 108

interface-connect 109
interface-disconnect 110
invoke-dispatch-get-property 111
invoke-dispatch-method 112
invoke-dispatch-put-property 113
lisp-variant 114

make-lisp-variant 115
:midl-type-library-file 116
print-i-dispatch-methods 117
guery-simple-i-dispatch-interface 118
register-active-object 119
revoke-active-object 120
set-error-info 120
set-i-dispatch-event-handler 121
set-variant 123

simple-i-dispatch 125
simple-i-dispatch-callback-object 126
standard-automation-collection 127
standard-i-connection-point-container 128
standard-i-dispatch 129

with-coclass 130

Contents

with-dispatch-interface 131

5 Tools 133

5.1 The COM Implementation Browser 133
5.2 The COM Object Browser 135

5.3 The COM Interface Browser 135

5.4 Editor extensions 136

6 Self-contained examples 137

6.1 Argument passing 137

6.2 Aggregation 137

6.3 OLE embedding of external components 137
6.4 Building an ActiveX control 138

6.5 OLE automation 138

Index

Preface

This manual documents the LispWorks COM/Automation API, which provides atoolkit for using Microsoft COM and
Automation with Common Lisp.

For details of using OLE and ActiveX controls with the CAPI, seethe classcapi : ol e- cont r ol - pane in the CAPI User
Guide and Reference Manual.

This preface contains information you need when using the rest of the this manual. It discusses the purpose of this manual,
the typographical conventions used, and gives a brief description of the rest of the contents.

Assumptions
The manual assumes that you are familiar with:
» LispWorks.
* The LispWorks FLI.
» Common Lisp and CLOS, the Common Lisp Object System.
» The functionality of Microsoft COM/Automation.

Unless otherwise stated, examples given in this document assume that the current package has COMon its package-use-list.

Conventions used in the manual
Throughout this manual, certain typographical conventions have been adopted to aid readability.

Text which refersto Lisp formsisprinted | i ke t hi s. Variables and values described in the reference sections are printed
like-this.

Entriesin the reference sections are listed alphabetically and each entry is headed by the symbol name and type, followed by
anumber of fields providing further details. These fields consist of a subset of the following: "Summary", "Signature”,
"Method signature”, "Superclasses’, "Subclasses’, "Slots", "Accessors', "Readers', "Compatibility note", "Description”,
"Notes', "Examples’, and "See also".

Entrieswith along "Description™ section usually have astheir first field a short " Summary"” providing a quick overview of the
purpose of the symbol being described.

The"Signature" section provides details of the arguments taken by the functions and macros and values returned, separated
by the => sign. Thetop level of parentheses is omitted, but parentheses used for destructuring in macros are included
explicitly. Optional itemsin the syntax of macros are denoted using square brackets [like this]. Repeated items have an
asterisk suffix like this*.

For classes, only direct sub- and superclasses are detailed in the "Subclasses' and " Superclasses' sections of each entry.
Examples show fragments of code and sometimes the results of evaluating them.
Finally, the "See also" section provides areference to other related symbols.

Please |et us know if you find any mistakesin the LispWorks documentation, or if you have any suggestions for
improvements.

Preface

Example files

This manual often refersto example filesin the LispWorks library viaa Lisp form like this:

(exanple-edit-file "confautonmation/events/ie-events")

These examples are filesin your LispWorks installation under lib/8-0-0-O/examples. You can simply evaluate the given form
to view the examplefile.

Example files contain instructions about how to use them at the start of thefile.

The examplesfiles are in aread-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
towrite afad file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy thefile
elsawhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

A Description of the Contents

The manual is divided into four sections, relating to COM, Automation, graphical tools and example files respectively. The
COM and Automation sections each contain a user guide and a reference chapter.

1 Using COM introduces the principles behind the LispWorks COM API and describes how to useit to call COM methods
and implement COM servers.

2 COM Reference Entries provides a detailed description of every function, macro, variable and type in the LispWorks
COM API.

3 Using Automation introduces the LispWorks Automation APl and describes how to useit to call Automation methods and
implement Automation servers.

4 Automation Reference Entries provides a detailed description of every function, macro, variable and type in the
LispWorks Automation API.

5 Tools describes some tools which are available in the LispWorks I DE to help with debugging applications using
COM/Automation. Please note that your windows may look different from the illustrations shown. Thisis because some
details are controlled by the theme and version of Microsoft Windows, not by LispWorks itself.

6 Self-contained examples lists the example files which are relevant to the content of this manual and are available in the
LispWorks library.

1 Using COM

1.1 Prerequisites

Because COM isalow level binary API, many features of the LispWorks COM API depend on the LispWorks FLI. Seethe
Foreign Language Interface User Guide and Reference Manual for details. You should also have a working knowledge of
Microsoft COM.

To compile IDL files, you will need Microsoft® Visual C++° installed.

1.2 Including COM in a Lisp application

This section describes how to load COM and generate any FLI definitions needed to use it, and how to build aCOM DLL.

1.2.1 Loading the modules
Before using any of the LispWorks COM AP, it must be loaded by evaluating:

(require "cont')

1.2.2 Generating FLI definitions from COM definitions

COM definitions are typically described in one of two ways, either as IDL files, which alow the full range of COM
definitions or as type libraries, which are generally only used for Automation. Before you can use any COM functionality in
aLisp application, you need to convert the COM definitionsinto Lisp FLI definitions and various supporting data structures.
This correspondsto using i dl . exe or the MFC Class Wizard when writing C/C++ COM code.

To convert an IDL file, either compileit using the function mi dI or add it to a system definition with the option : t ype
:midl-fil eandcompileand load the system.

Note: typeslikel Di spat ch must declared before they are used, for this conversion to work.

Conversion of type librariesis covered in 3 Using Automation.

1.2.3 Standard IDL files

Certain standard IDL files have already been converted to FLI definitions as part of the COM API modules. These are listed
below and should not be converted again.

10

1 Using COM

Pre converted IDL files

IDL file Part of Lisp module
UNKNWN. | DL com

WI'YPES. | DL com

QAIDL. | DL aut omati on
OLEAUTO. | DL aut omati on

OCl DL. | DL aut omati on

1.2.4 Making a COM DLL with LispWorks

You can make a DLL with LispWorks by using del i ver (or save-i mage) withthe: dl | - export s keyword. The value of
the: dl | - export s keyword can include the keyword : com which exports (with appropriate definitions) the standard four
symbolsthat a COM DLL needs:

| Get Cl assObj ect
| Regi st er Server
| Unr egi st er Server

Dl
Dl
Dl
Dl | CanUnl oadNow

If no other symbols are exported, thevalue of : dl | - export s can be the keyword : com which means the same as the list
(: com . Seethe Delivery User Guide for more details.

You can use the function set - r egi st er - server-error-reporter toreport when calsto D | Regi st er Server or
Dl | Unr egi st er Server fail.

1.3 The mapping from COM names to Lisp symbols

COM names are typically a mixture of upper and lower case letters and digits, with words capitalized. These names are
mapped to Lisp symbols, adding hyphens to match typical Lisp conventions for word boundaries. These examplesillustrate
some conversions:

Examples of COM names and their corresponding Lisp hames

COM name Lisp name

| Unknown i -unknown

pStr p-str

DWORD dwor d

| EnunVVARI ANT i -enumvari ant

In addition, COM methods with the pr opget attribute have aget - prefix added to their names and COM methods with the
pr opput or propput ref attributes have aput - prefix added to their names. Note that these prefixes are not used when
calling methods via Automation.

To see the mapping for a particular file, look at the output while loading a converted IDL file or type library.

11

1 Using COM

1.4 Initializing the COM runtime

Before you can interact with COM, you must initialize the COM runtime by callingco-i ni ti al i ze. Thismust be called in
every thread that uses COM. LispWorks takes care of cleaning up the COM runtime when athread exits, but you can also do
thisexplicitly using co-uni niti al i ze.

1.5 Obtaining the first COM interface pointer

All interaction with aremote COM server is done viaits interface pointers and the most common way to obtain the first
interface pointer isusing the function cr eat e- i nst ance. Thistakesthe CLSID of the server and returns an interface
pointer for thei - unknown interface unless another interface name is specified. Note that you must initialize the COM
runtime before calling cr eat e- i nst ance (see 1.4 Initializing the COM runtime).

For example, the following will create an instance of Microsoft Word:

(create-instance "000209FF- 0000- 0000- CO00- 000000000046")

1.6 Reference counting

The lifetime of each COM interface pointer is controlled by its reference count. When a new reference to a COM interface
pointer is made, the function add- r ef should be called to increment its reference count. When areference is removed, the
function r el ease should be called to decrement it again. The macrowi t h-t enp-i nt er f ace can be useful when working
with temporary interface pointers to ensure that they are released when a body of code exitsin any way.

Refer to standard COM texts for more details of the reference counting rules. The LispWorks COM API does not perform
any automatic reference counting (sometimes called smart pointersin C++).

1.7 Querying for other COM interface pointers

An interface pointer can be queried to discover if the underlying object supports other interfaces. Thisis done using the
function quer y-i nt er f ace, passing the interface pointer and ther ef i i d of theinterfaceto query. Arefiidiseithera
foreign pointer to a GUID structure or asynmbol naming a COM interface as described in 1.3 The mapping from COM
namesto Lisp symbols.

For example, the function below will find the COM interface pointer for itsi - di spat ch interface:

(defun find-dispatch-pointer (ptr)
(query-interface ptr 'i-dispatch))

Themacrowi t h- quer y-i nt er f ace can be used to query an interface pointer and automatically release it again on exit
from a body of code.

1.8 Calling COM interface methods

Themacroscal | -cominterface andw t h-cominterface areused to call COM methods. To call aCOM method,
you need to specify the interface name, the method name, a COM interface pointer and suitable arguments. The interface and
method names are given as symbols named asin 1.3 The mapping from COM namesto Lisp symbols and the COM
interface pointer isaforeign pointer of typecom i nt er f ace. In both macros, the args and values are as specified in the
1.8.1 Data conver sion when calling COM methods.

Thewi t h- com i nt er f ace macro is useful when several methods are being called with the same COM interface pointer,
because it establishes alocal macro that takes just the method name and arguments.

12

http://www.lispworks.com/documentation/HyperSpec/Body/t_symbol.htm

1 Using COM

For example, the following are equivalent ways of calling the nove and r esi ze methods of a COM interface pointer
wi ndow ptr for thei - wi ndow interface:

(progn
(call-cominterface (W ndow ptr i-w ndow nove) 10 10)
(call-cominterface (W ndow ptr i-w ndow resize) 100 100))

(with-cominterface (call-w ndow ptr i-w ndow) w ndow ptr
(cal |l -wi ndowptr nove 10 10)
(call -wi ndowptr resize 100 100))

1.8.1 Data conversion when calling COM methods

All IDL definitions map onto FLI definitions, mirroring the mapping that mi dI . exe doesfor C/C++. However, IDL
provides some additional type information that C/C++ lacks (for instance the st r i ng attribute), so there are some additional
conversions that Lisp performs when it can.

The COM API uses the information from the IDL to convert data between FL1 types and Lisp types where appropriate for
arguments and return values of COM method calls. In particular:

 Primitive integer types are represented as Lisp integers.

Primitive char types are represented as Lisp characters.

Primitive float types are represented as Lisp float types.

COM interface pointers are FL | objects represented as objects of type com i nt er f ace, which supports type checking
of the interface name.

Except as detailed below, al other COM types are represented as their equivalent FLI types. Thisincludes other pointer
types and structs.

In COM, al parameters have a direction which can be either in, out or both in and out (referred to as in-out here). Arguments
and values for client-side COM method calls reflect the direction as described in the following sections. For a complete
version of the example code, seethefile:

(example-edit-file "com nmanual / args/ args-calling")

1.8.1.1 In parameters
In parameters are passed as positional argumentsin the order they are specified and do not affect the return values.

» A parameter with the st r i ng attribute can be passed either as aforeign pointer or as a Lisp string (converted to aforeign
string with dynamic extent for the duration of the call).

» A parameter whose typeis either an array type or a pointer type with asi ze_i s attribute can be passed either asa
foreign pointer or, if the element type is not aforeign aggregate type, asaLisp array of the appropriate rank (converted
to aforeign array with dynamic extent for the duration of the call).

» Otherwise, the Lisp value is converted using the FLI according to the mapping of types defined above.
For example, giventhe IDL:
i mport "unknwn.idl";

[object,
uui d(E37A70A0- EFCO- 11D5- BF02- 000347024BE1)

13

1 Using COM

]

i nterface | Argunent Exanpl es : | Unknown
typedef [string] char *argString

HRESULT i nMethod([in] int inlnt,
[in] argString inString,
[in] int inArraySize
[in, size_is(inArraySize)] int *inArray);

}
the method i n- met hod can be called with Lisp objectslike this:

(let ((array #(7 6)))
(call-cominterface (arg-exanple i-argunent-exanples
i n- net hod)
42
"the answer"
(l'ength array)
array))

or with foreign pointerslike this:

(fli:with-dynam c-foreign-objects ()
(let* ((farray-size 2)
(farray (fli:allocate-dynanic-foreign-object
:type :int
:nel ens farray-size
cinitial-contents ' (7 6))))
(fli:with-foreign-string (fstring elt-count byte-count)
"the answer"
(declare (ignore elt-count byte-count))
(call-cominterface (arg-exanple i-argunent-exanples
i n- net hod)
42
fstring
farray-size
farray))))

Note that thei nt arguments are always passed as Lispi nt eger becausei nt isaprimitive type.

1.8.1.2 Out parameters

Out parameters are always of type pointer in COM and never appear as positional argumentsin the Lisp call. Instead, thereis
akeyword argument named after the parameter, which can be used to pass an object to be modified by the method. In
addition, each out parameter generates a return value, which will be eq to the value of keyword argument if it was passed and
otherwise depends on the type of the parameter as described below.

« If the value of the keyword argument is aforeign pointer then it is passed directly to the method and is expected to point
to an object of the appropriate size to contain the returned data.

* If the value of the keyword argument isni | then anull pointer is passed to the method.

» Except where specified below, if the keyword argument is omitted, aforeign object with dynamic extent is created to
contain the value and a pointer to this object is passed to the method. On return, the contents maybe be converted back to

aLisp object as specified.

» A parameter with the st ri ng attribute is converted to a Lisp string if the keyword is not passed. If the keyword is
passed, the memory for the string might need to be freed by co- t ask- mem f r ee if nothing else does this.

14

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

1 Using COM

» A parameter whose type is either an array type or a pointer type with asi ze_i s attribute will be convertedto aLisp
array if the keyword is not passed and the element type is not aforeign aggregate type. If the keyword argument is not
passed then anew Lisp array ismade. If the value of the keyword argument isa Lisp array then that isfilled.

» For aparameter whose type is aforeign aggregate type, such asst r uct , the keyword argument must be passed and its
value must be as aforeign pointer. This pointer is passed directly to the method.

» For aparameter withthei i d_i s attribute, acom i nt er f ace pointer is returned using the indicated iid parameter to
control the interface name.

» Otherwise, the dynamic extent foreign pointer is dereferenced to obtain the Lisp return value, asif by calling
fli:dereference.

For example, given the IDL:

i mport "unknwn.idl";

[object,
uui d(E37A70A0- EFC9- 11D5- BF02- 000347024BE1)
]

interface | Argunment Exanpl es : | Unknown

{
typedef [string] char *argString

HRESULT out Met hod([out] int *outlnt,
[out] argString *outString
[in] int outArraySize
[out, size_is(outArraySize)] int *outArray)

}
the method out - met hod can return Lisp objects like this:

(rmul tiple-value-bind (hres int string array)
(call-cominterface (arg-exanple i-argunent-exanples
out - et hod)
8)
int is of type integer
string is of type string
array is of type array

or fill an existing array like this:

(let ((out-array (make-array 5)))
(rmul tiple-value-bind (hres int string array)
(call-cominterface (arg-exanple i-argunent-exanples
out - et hod)
(length out-array)
:out-array out-array)
int is of type integer
string is of type string
array is eq to out-array and was filled

)
or set the contents of foreign memory like this:

(fli:with-dynam c-foreign-objects ((out-int :int)
(out-string WN32: LPSTR))
(let* ((out-farray-size 5)
(out-farray (fli:allocate-dynamn c-foreign-object
:type :int
:nel ens out-farray-size)))

15

1 Using COM

(rmul tiple-value-bind (hres int string array)
(call-cominterface (arg-exanple i-argunent-exanples
out - et hod)
out-farray-size
sout-int out-int
:out-string out-string
:out-array out-farray)
Each foreign pointer contains the nmethod's results
int is the foreign pointer out-int
string is the foreign pointer out-string
array is the foreign pointer out-array
;7 Note that the string nmust be freed as foll ows:
(co-task-nemfree (fli:dereference out-string)))))

1.8.1.3 In-out parameters

In-out parameters are always of type pointer in COM and are handled as a mixture of in and out. In particular, they have both
apositional parameter and a keyword parameter, which can be used to control the value passed and conversion of the value
returned respectively. Each in-out parameter generates a return value, which will be eq to the value of the keyword argument
if it was passed and otherwise depends on the type of the parameter as below.

Asfor out parameters, if the value of the keyword argument is aforeign pointer then it is passed directly to the method
and is expected to be of the appropriate size to contain the returned data. If the value of the keyword argument isni |
then anull pointer is passed to the COM call. The positional argument should be ni | isthese cases. If the keyword
argument not passed, aforeign object with dynamic extent is created to contain the value, initialized with data from the
positional argument before calling the method and possibly converted back to a Lisp value on return.

For a parameter with the st r i ng attribute, the positional argument is handled as for the in argument st r i ng case and
the keyword argument is handled as for the out argument st ri ng case. The functionsco- t ask- nrem al | oc and
co-task- mem f r ee should be used to manage the memory for the string itself.

For a parameter whose type is a non-aggregate array type or a pointer to a non-aggregate type that hasthesi ze_i s
attribute, the positional argument is handled as for the in argument array case and the keyword argument is handled as for
the out argument array case. To update an existing array, pass it as both the positional and keyword argument values.

For a parameter whose type is aforeign aggregate type, the keyword argument must be passed and its value must be a
foreign pointer. This pointer is passed directly to the method and the positional argument should beni | .

Otherwise, aforeign object with dynamic extent is created, set to contain the value of positional argument before calling
the method and dereferenced on return to obtain the Lisp return value, asif by callingf 1 i : der ef er ence.

For example, given the IDL:

i mport "unknwn.idl"

[object,
uui d(E37A70A0- EFC9- 11D5- BF02- 000347024BE1)
]

i nterface | Argunment Exanpl es : | Unknown
typedef [string] char *argString

HRESULT i nout Met hod([in, out] int *inoutlnt,
[in, out] argString *inoutString
[in] int inoutArraySize,
[in, out, size_is(inoutArraySize)]
int *inoutArray);

}

the method i nout - met hod can receive and return Lisp objects like this:

16

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

1 Using COM

(let ((in-array #(7 6)))
(rmul tiple-value-bind (hres int string array)
(call-cominterface (arg-exanple i-argunent-exanples
i nout - net hod)
42
"the answer"
(length in-array)
i n-array)
int is of type integer
string is of type string
array is of type array

)
or fill an existing array like this:

(let* ((in-array #(7 6))
(out-array (nake-array (length in-array))))
(rmul tiple-value-bind (hres int string array)
(call-cominterface (arg-exanple i-argunent-exanples
i nout - net hod)
42
"the answer"
(length in-array)
in-array
;inout-array out-array)
int is of type integer
string is of type string
array is eq to out-array, which was filled

)
or update an existing array likethis:

(let* ((inout-array #(7 6)))
(mul tiple-value-bind (hres int string array)
(call-cominterface (arg-exanple i-argunent-exanples
i nout - net hod)
42
"the answer"
(l'ength inout-array)
i nout -array
sinout-array inout-array)
;; int is of type integer
;; string is of type string
;; array is eq to inout-array, which was updated

))

1.8.2 Error handling

Most COM methods return an integer hr esul t to indicate success or failure, which can be checked using succeeded,
s_ok, hresul t-equal orcheck-hresult.

In addition, after calling a COM method that provides extended error information, you can call the function
get - error - i nf o to obtain more details of any error that occurred. Thisis supplied with alist of fields, which should be
keywords specifying the parts of the error information to obtain.

For example, inthe session below, t t isa COM interface pointer for thei - t est - sui t e- 1 interface:

CL-USER 186 > (call-cominterface (tt i-test-suite-1 fx))

"in fx" ;; inplenmentation running
- 2147352567 ;; the error code DI SP_E EXCEPTI ON

17

1 Using COM

CL- USER 187 > (get-error-info :fields '(:description
:source))
("fOO" Ilell)

CL- USER 188 >

1.9 Implementing COM interfaces in Lisp

Lisp implementations of COM interfaces are created by defining an appropriate class and then defining COM methods for all
the interfaces implemented by this class.

The class can inherit from st andar d- i - unknown to obtain an implementation of thei - unknown interface. This superclass
provides reference counting and an implementation of the quer y- i nt er f ace method that generates COM interface
pointers for the interfaces specified in the class definition. It also supports aggregation.

There are two important things to note about COM classes and methods:

» The implementation objects and COM interface pointers are different things: an interface pointer must be queried from
the implementation object explicitly and the function com obj ect - f r om poi nt er can be used to obtain an object
from an interface pointer. Thisisshow in Therelationship between an Lisp object and its COM interface pointers
below.

* COM methods are not defined with def net hod because they have very specific conventions for passing arguments and
returning values that are different from those of Lisp.

The relationship between an Lisp object and its COM interface pointers

(JIEFLY

[nterface pointer 1

mooke

Lisp object
{UEFY

[nterface pointer 2

rmooke

1.9.1 Steps required to implement COM interfaces
To implement a COM interface in Lisp, you need the following:

1. Some COM interface definitions, converted to Lisp as specified in 1.2.2 Generating FL | definitions from COM
definitions.

2. A COM object class defined with the macro def i ne- com i npl enent at i on, specifying the interface(s) to implement.

3. Implementations of the methods using def i ne- com net hod.

4. If the objects are to be created by another process, a description of the class factories created with
make-f act ory-ent ry and registered withr egi ster-cl ass-factory-entry.

5. Initialization codeto call co-initiali ze. It shouldalsocall start-factori es inathread that will be processing
Windows messages (for instance a CAPI thread) if you have registered class factories.

18

http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

1 Using COM

1.9.2 The lifecycle of a COM object

Since COM abjects can be accessed from outside the Lisp world, possibly from a different application, their lifetimes are
controlled more carefully than those of normal Lisp objects. The diagram below shows the lifecycle of atypical COM object.

The lifecycle of a COM object

Start th."l

CLOS object iniffalizaffon
{CLDE object in Lib@

COM object mifialization

' CLOS object in Lisp ™ COM nsgee
'I.K%CD M interfaces referenced by clients w4 g

COM object desfruction

(CLOS object in Lis |:-)

Carrbamg e collectfon

(na)

End

M vy

Each COM object goes through the following stages.
1. CLOS object initialization.

In the first stage, the object is created by acall to make- i nst ance, either by aclass factory (see 1.9.3 Class factories)
or explicitly by the application. The normal CLOS initialization mechanismssuch asi ni ti al i ze-i nst ance can be
used to initialize the object. During this stage, the object is known only to Lisp and can be garbage collected if the next
stage is not reached.

2. COM initialization.

At some point, the server makes the first COM interface pointer for the object by invoking the COM method
query-interface, either automatically in the class factory or explicitly using by using macros such as

guery-obj ect-interface orcal |l - com obj ect. When this happens, the abject's reference count will become 1
and the object will be stored in the COM runtime system. In addition, the generic functioncom obj ect-initi ali ze
is called to allow class-specific COM initialization to be done.

3. COM usage.

In this stage, the object is used viaits COM interface pointers by aclient or directly by Lisp code in the server. Severa
COM interface pointers might be created and each one contributes to the overall reference count of the object.

4, COM destruction.

This stage is entered when the reference count is decremented to zero, which istriggered by all the COM interface
pointers being released by their clients. The generic function com obj ect - dest r uct or iscalled to allow class-
specific COM cleanups and the object is removed from the COM runtime system. From now on, the object is not known
to COM world.

5. Garbage collection.

Thefinal stage of an object's lifecycle isthe normal Lisp garbage collection process, which removes the object from

19

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

1 Using COM

memory when there are no more referencesto it.

1.9.3 Class factories

The LispWorks COM runtime provides an implementation of the class factory protocol, which will construct COM objects
on demand. The class factory implementation supports aggregation when passed an outer unknown pointer.

Class factories are described by objects created with make- f act or y- ent r y and must be registered with the COM runtime
usingregi ster-class-factory-entry. Thefunctionstart-fact ori es should be called when the application
initializes to start all the registered class factories.

When using the Automation API described in 3 Using Automation and 4 Automation Reference Entries, class factories are
created and registered automatically by the def i ne- aut omat i on- conponent macro if appropriate.

1.9.4 Unimplemented methods

If the class does not define al the COM methods for the interfaces it implements, then some of those methods may be
inherited from superclasses (see 1.9.5 I nheritance). If thereisno direct or inherited definition of a method, then a default
method that returns E_NOTI MPL will be provided automatically. The default method also fills al out arguments with null
bytes and ignores al in and in-out arguments except those needed to compute the size of arrays for filling out arguments.

1.9.5 Inheritance

A COM object class will inherit COM method implementations from its superclasses if no direct method is defined.
However, unlike Lisp methods where an effective method is computed from the set of applicable methods for each generic
function, COM methods are always inherited in groups viatheir defining interface. Thisis because the interface is used to
call aCOM method, not the COM object.

Specifically, each method is inherited from the first class in the class precedence list that implements the interface where the
method is declared. No attempt is made to search further down the class precedence list if this classis using the
unimplemented method definition described in 1.9.4 Unimplemented methods.

1.9.5.1 An example of multiple inheritance

The inheritance rules may lead to unexpected resultsin the case of multiple inheritance. For example, consider the following
IDL:

/1l IDL definition of |Foo
i mport "unknwn.idl";

[uui d(7DOEB760- E4E5- 11D5- BF02- 000347024BEL)]
interface | Foo : | Unknown

HRESULT net hi();

HRESULT net h2();
HRESULT net h3();

}

and these three (partial) implementations of the interfacei - f oo.

1. Animplementation with no definition of met h2:

(define-cominplenentation foo-inpl-1 ()

0

(:interfaces i-fo0))

20

1 Using COM

(define-comnethod nmethl ((this foo-inpl-1))
s_ok)

(define-comnethod nmeth3 ((this foo-inpl-1))
s_ok)

2. Animplementation with no definition except met h2:

(define-cominplenentation foo-inpl-2 ()

0

(:interfaces i-fo00))

(define-comnmethod nmeth2 ((this foo-inpl-2))
s_ok)

3. A combined implementation, inheriting from steps 1 and 2.

(define-cominpl ementation foo-inpl-12 (foo-inpl-1
foo-inpl -2)
0

(:interfaces i-fo0))

In step 3, the classf oo- i npl - 12 implementsthe interfacei - f oo, but inherits al thei - f oo method definitions from

f oo-i npl - 1, which isthe first classin the class precedence list that implements that interface. These method definitions
include the "unimplemented” definition of net h2 inf oo- i npl - 1, which hides the definition in the other superclass

f oo-i npl - 2. Asaresult, when the following form is evaluated with p- f oo created from an instance of f oo- i npl - 12:

(let ((object (make-instance 'foo-inpl-12)))
(with-temp-interface (p-foo)
(nth-value 1 (query-object-interface
foo-inpl-12
obj ect
"i-foo))
(with-cominterface (call-p-foo i-foo) p-foo
(values (call-p-foo nethl)
(call -p-foo neth2)
(call-p-foo meth3)))))

thethreevaluesare S OK, E_NOTI MPL and S_OK.

1.9.5.2 A second example of multiple inheritance

Hereisafurther extension to the examplein 1.9.5.1 An example of multiple inheritance, with an additional interface
i - f oo- ex.that inheritsfromi - f oo asin the following IDL:

[uui d(7D9EB761- E4E5- 11D5- BF02- 000347024BE1)]
interface | FooEx : | Foo

{
HRESULT net h4();

}

Thisinterface has the following additional implementations.

1. Animplementation defining all the methodsini - f oo- ex:

(define-cominpl ementation foo-ex-inpl-1 ()

0

(:interfaces i-foo-ex))

21

1 Using COM

(define-comnethod nmethl ((this foo-ex-inpl-1))
s_ok)

(define-comnmethod nmeth2 ((this foo-ex-inpl-1))
s_ok)

(define-comnethod meth3 ((this foo-ex-inpl-1))
s_ok)

(define-comnethod nmeth4 ((this foo-ex-inpl-1))
s_ok)

2. A combined implementation, inheriting from step 3 from 1.9.5.1 An example of multiple inheritance and step 1 above.

(define-cominplenentation foo-ex-inpl-2 (foo-inpl-12
foo-ex-inpl-1)
()

(:interfaces i-foo-ex))

In step 2, the classf oo- ex- i npl - 2 implements the interfacei - f oo- ex and isasubclass of f 0oo- ex-i npl - 1, which
implementsi - f oo. When the following form is evaluated with p- f oo- ex created from an instance of f oo- ex-i npl - 2:

(let ((object (make-instance 'foo-ex-inpl-2)))
(with-temp-interface (p-foo-ex)
(nth-value 1 (query-object-interface
f oo-ex-inpl -2
obj ect
"i-foo-ex))
(with-cominterface (call-p-foo i-foo-ex) p-foo-ex
(values (call-p-foo nethil)
(call-p-foo meth2)
(call-p-foo meth3)
(call-p-foo nmethd)))))

thefour valuesare S_OK, E_NOTI MPL, S_OKand S_OK.

Note that, even though f oo- ex- i npl - 2 only explicitly implementsi - f oo- ex, the methods net h1, met h2 and net h3
were declared in its parent interfacei - f oo. This meansthat their definitions (including the "unimplemented" definition of
met h2) areinherited from f oo-i npl (viaf oo-i npl - 12), becausef oo-i npl - 12 isbeforef oo- ex-i npl - 2 inthe class
precedence list of f 0o- ex-i npl - 2. Only net h4, whichisdeclaredini - f oo- ex, isinherited from f oo- ex-i npl - 1.

1.9.6 Data conversion in define-com-method

All IDL definitions map onto FLI definitions, mirroring the mapping that mi dI . exe doesfor C/C++. However, IDL
provides some additional type information that C/C++ lacks (for instance the st r i ng attribute), so there are some additional
conversions that Lisp performs when it can. For a complete example of data conversion, see thefile:

(exanple-edit-file "conm manual / args/args-inpl")

1.9.6.1 FLI types

The COM API uses the information from the IDL to convert data between FL1 types and Lisp types where appropriate for
arguments and return values of COM method definitions. In particular:

 Primitive integer types are represented as Lisp integers.

 Primitive char types are represented as Lisp characters.

22

1 Using COM

» Primitive float types are represented as Lisp float types.

» COM interface pointers are represented as objects of type
com i nt er f ace, which supports type checking of the interface name.

» All other types are represented as their equivalent FLI types. Thisincludes other pointer types and structs.

Each argument isthe IDL has a corresponding argument in the
defi ne- com net hod form. In addition, each argument has a pass-style which specifies whether additional conversions are
performed.

If the pass-style of aparameter is: f or ei gn, then the value will be exactly what the FL1 would provide, i.e. foreign pointers
for strings and for all out or in-out parameters (which are always pointersin the IDL).

If the pass-style of aparameter is: | i sp, then the conversions described in the following sections will be done.

If there is a parameter marked with the var ar g attribute then the value must be an array.

1.9.6.2 In parameters
For in parameters:

» A parameter with the st ri ng attribute will be converted to a Lisp string. The string should not be destructively modified
by the body.

» A parameter of COM type BSTR will be converted to a Lisp string. The string should not be destructively modified by
the body.

» A parameter of COM type VARI ANT* will be converted to a Lisp object according to the VT code in the variant (see
Automation types, VT codes and their corresponding Lisp types).

» A parameter of COM type SAFEARRAY(type) or SAFEARRAY(type) * will be converted to aLisp array. The elements of
type type are converted as in Automation types, VT codes and their corresponding Lisp types.

» A parameter of COM type VARI ANT_BOOL will be converted to ni | (for zero) ort (for any other value). Note that a
parameter of type BOOL will be converted to ani nt eger because type libraries provide no way to distinguish this case
from the primitive integer type.

» A parameter whose type is an array type or apointer typewith asi ze_i s attribute will be converted to atemporary Lisp
array. The Lisp array might have dynamic extent.

» Otherwise, the valueis converted to a Lisp value using the FLI according to the mapping of types defined in 1.9.6.1 FL |
types.

1.9.6.3 Out parameters
For out parameters:

» A parameter whose type is an array type or apointer typewith asi ze_i s attribute will be converted to aLisp array of
the appropriate size allocated for the dynamic extent of the body forms. After the body has been evaluated, the contents
of the array will be copied into the foreign array that the caller has supplied.

* For other types, the parameter will beni | initially and the body should use set g to set it to the value to be returned.

In the latter case, the value will be converted to aforeign object after the body has been evaluated. The following conversions
are done:

» For aparameter withthe st ri ng attribute, a Lisp string will be converted to aforeign string using CoTaskMemAl | oc() .

23

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_setq.htm

1 Using COM

» For aparameter of COM type BSTR*, a Lisp string will be converted to aforeign string using SysAl | ocStri ng() .

 For aparameter of COM type VARI ANT*, the value can be any Lisp value, with the VT code being set according to the
Lisp type (see Automation types, VT codes and their corresponding Lisp types). If exact control isrequired, use the
pass-style: f or ei gn and the function set - vari ant .

» For aparameter of COM type SAFEARRAY(type) *, the value can be either aforeign pointer to an appropriate
SAFEARRAY or aLisp array. Inthe latter case, a new SAFEARRAY is created which contains the elements of the Lisp
array converted asin Automation types, VT codes and their corresponding Lisp types.

 For aparameter of COM type VARI ANT_BOCOL*, the value can be a generalized boolean.

» Otherwise, the Lisp value will be converted using the FLI according to the mapping of types defined in 1.9.6.1 FL I
types.

1.9.6.4 In-out parameters
For in-out parameters.

» A parameter whose typeis an array type or a pointer type with asi ze_i s attribute will be converted to aLisp array of
the appropriate size alocated for the dynamic extent of the body forms. The initial contents of the Lisp array will be
taken from the foreign array which was passed by the caler. After the body has been evaluated, the contents of the Lisp
array will be copied back into the foreign array.

» For aparameter with the st ri ng attribute, the parameter will be the converted to a Lisp string. To return a different
string, the parameter should be set to another (non eq) Lisp string, which will cause the original foreign string to be
freed with CoTaskMentr ee() and anew foreign string allocated with CoTaskMenmAl | oc() . Theinitia string should
not be destructively modified by the body.

 For aparameter of COM type BSTR*, the parameter will be the converted to a Lisp string. To return adifferent string,
the parameter should be set to another (non eq) Lisp string, which will cause the original foreign string to be freed with
SysFreeString() and anew foreign string allocated with SysAl | ocString() .

 For parameters of COM type VARI ANT*, the parameter will be converted to a Lisp object (see Automation types, VT
codes and their corresponding Lisp types). To return adifferent value, the parameter should be set to another (non eq)
value, which will be placed back into the VARI ANT with the VT code being set according to the Lisp type (see
Automation types, VT codesand their corresponding Lisp types). If exact control of the VT codeisrequired, use the
pass-style: f or ei gn and the function set - vari ant .

* For parameters of COM type SAFEARRAY(type) * , the parameter will be converted to aLisp array. The elements of type
type are converted asin Automation types, VT codes and their corresponding Lisp types. To return a different value,
the parameter should be set to another (non eq) value, which can be either aforeign pointer to an appropriate
SAFEARRAY or aLisp array. Inthelatter case, a new SAFEARRAY is created which contains the elements of the Lisp
array converted asin Automation types, VT codes and their corresponding Lisp types.

» For parameter of COM type VARI ANT_BOOL*, the parameter will beni | ort according to the initial value (zero or non
zero). To return adifferent value, set the parameter to a new value, which can be a generalized boolean.

1.10 Calling COM object methods from Lisp

Within the implementation of a COM object, the macroscal | - com obj ect andwi t h- com obj ect can be used to call
COM methods directly for a COM object without using an interface pointer. To call a COM method, you need to specify the
class name, the method name, the interface name if the method name is not unique, a COM object and suitable arguments.
The class nameisasymbol asused inthedef i ne- com i npl enent at i on form and can be a superclass of the actual object
class. The method and interface names are given as symbols named asin 1.3 The mapping from COM namesto Lisp
symbols. and the arguments and values are as specified below in 1.10.1 Data conver sion when calling COM object

24

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

1 Using COM

methods. These macros should be used with caution because they assume that the caller knows the implementation's pass-
style for al the arguments.

Thewi t h- com obj ect macro is useful when several methods are being called with the same COM object, because it
establishes alocal macro that takes just the method name and arguments.

1.10.1 Data conversion when calling COM object methods

No explicit argument or return value conversion isdone by cal | - com obj ect orwi t h- com obj ect . Asaresult, every
argument must be passed as a positiona argument and must be of the type expected by the method's implementation The
alowable types are described in the following sections.

1.10.1.1 In parameters

For in parameters:

For a parameter with the st r i ng attribute, the value can be a Lisp string.
For a parameter of COM type BSTR, the value can be a Lisp string.

For a parameter whose typeis an array type or a pointer type with asi ze_i s attribute, the value can be aLisp array of
the appropriate rank and dimension.

Otherwise, the value should match what the FLI would generate for the parameter's type.

1.10.1.2 Out parameters

For out parameters:

If ni | ispassed, the value from the method is returned without any conversion.

For a parameter whose type is an array type or a pointer typewith asi ze_i s attribute, the value can be aLisp array.
The contents of the array will be modified by the method and the array will be returned as a value.

Otherwise, the value should be aforeign pointer of the type that the FL1 would generate for the parameter's type. The
foreign pointer will be returned as avalue.

1.10.1.3 In-out parameters

For in-out parameters.

For a parameter whose type is an array type or a pointer typewith asi ze_i s attribute, the value can be aLisp array.
The contents of the array will be modified by the method and the array will be returned as a value.

For a parameter with the st r i ng attribute, the parameter can be aLisp string. The value of the parameter at the end of
the body will be returned as avalue.

For a parameter of COM type BSTR*, the parameter can be aLisp string. The value of the parameter at the end of the
body will be returned as avalue.

For parameters of COM type VARI ANT*, the parameter can be any Lisp object. The value of the parameter at the end of
the body will be returned as avalue.

If the value is aforeign pointer of the type that the FLI would generate for the parameter's type then the foreign object it
points to will be the value of the parameter. The foreign pointer will be returned as a value, with the new contents as
modified (or not) by the method.

1 Using COM

» Otherwise, the parameter is passed directly to the method and the value of the parameter at the end of the body will be
returned as avalue.

26

2 COM Reference Entries

This chapter documents COM functionality.

add-ref

Summary

Increments the reference count of a COM interface pointer.

Package

com

Signature

add-ref interface-ptr => ref-count

Arguments

interface-ptr 0 A COM interface pointer.
Values

ref-count The new reference count.
Description

Function

Each COM interface pointer has a reference count which is used by the server to control itslifetime. The function add- r ef
should be called whenever an extrareference to interface-ptr is being made. The function invokes the COM method

I Unknown: : AddRef sotheform (add-ref ptr) isequivaenttousingcal | -cominterface asfollows:

(call-cominterface (ptr i -unknown add-ref))

Examples

(add-ref p-foo)

See also

rel ease

i nterface-ref
query-interface
call-cominterface

27

2 COM Reference Entries

automation-server-command-line-action Function

Summary

Reports what action was specified for the automation server.

Package

com

Signature

aut omat i on- server-conmand-| i ne-acti on => action

Values

action One of the keywords: r egi st er, : unregi st er or: enbeddi ng, orni | .

Description

The function aut omat i on- ser ver - command- | i ne- act i on inspects the command line to see what action was specified
for the automation server. The possible return values have the following meanings:

‘register The server should register itself (by r egi st er - server). Specified by / RegSer ver .
unregi ster The server should unregister itself (by unr egi st er - ser ver). Specified by / UnRegSer ver .
: enbeddi ng The server was run with / Enbeddi ng or - Enbeddi ng.

ni | No recognized action.

See also

regi ster-server
unr egi st er - server

automation-server-main Function

Summary

For use as the main function for an automation server.

Package

com

Signature

aut omati on-server-nmai n &ey exit-delay exit-function new-process force-server forced-exit-delay quit-on-registry-error
handle-registry-error

28

2 COM Reference Entries

Arguments

exit-delay(] A non-negative real number.
exit-functiond A function specifier.
new-process’] A boolean.

force-server A boolean.

forced-exit-delay] A non-negative real number.

quit-on-registry-error
A boolean.

handle-registry-error
A boolean.

Description

The function aut onmat i on- ser ver - mai n isfor use as the main function for an automation server.

exit-delay, if supplied, setsthe exit delay for aut onat i on- server -t op- 1 oop, by calling
set - aut omati on-server-exit-del ay withit.

exit-function is an exit-function for aut onat i on- ser ver -t op- | oop. The default value of exit-functionis
server-can-exit-p.

new-process controls whether to run aut omat i on- server -t op- | oop inits own process.

force-server controls whether to force running the automation server even if the application starts normally. The default value
of force-server ist .

forced-exit-delay specifies avalue for exit-delay in seconds when force-server is non-nil.

aut omat i on- ser ver - mai n checks the command line (using aut omat i on- ser ver - command- | i ne- act i on) for what
action it should do, and then doesiit.

If theactionis: regi ster or: unregi ster, aut onati on-server - mai n triesregister or unregister the server (using
regi ster-server andunr egi st er - server). If the operation succeeds, aut omat i on- ser ver - mai n just returns
:register or:unregister.

handle-registry-error controls what happens if there is an error while trying to register or unregister. If ni | issupplied then
error iscalled, and if anon-nil valueis supplied, then the error is handled. If handle-registry-error is not supplied, by
default the error is handled, but if the command line contains - debug or / debug, the error is not handled. The default value
of handle-registry-error isni | .

quit-on-registry-error controls what happensif an error occurs during registration. If it is non-nil (the default), then
aut onat i on- server - mai n calsqui t with the appropriate status value (5). Otherwiseit returns: r egi st er-fail ed or
sunregi ster-fail ed. Thedefault value of quit-on-registry-error ist .

If the command line action is: enbeddi ng or the actionisni | and force-server is non-nil (the default) then

aut omat i on- server - mai n runsthe server by using aut onat i on- server -t op- 1 oop. If new-processisni | (the
default), aut omat i on- server -t op- | oop iscalled on the current process. In this case aut omat i on- ser ver - mai n
returns only after aut omat i on- server -t op- | oop exits (and the server was closed). If new-processistrue,

aut omat i on-server -t op-1 oop iscaled onitsown process and aut omat i on- ser ver - mai n returnsimmediately.

If the server is"forced", that isthe action isni | but force-server is non-nil, and forced-exit-delay is non-nil, exit-delay is set
to forced-exit-delay (using set - aut omat i on- ser ver - exi t - del ay). Thisoverrides the supplied for exit-delay.

29

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

2 COM Reference Entries

aut omat i on- server - mai n returnsthe result of aut omat i on- server - command- | i ne- acti on, except in the case of
registry failure as described above.

Notes

1. aut omat i on-ser ver - mai n isintended to be used as the main function in an automation server that is delivered as an
executable (rather than asaDLL).

2. When the application acts only as automation server, aut onat i on- ser ver - mai n can be the function argument to
del i ver, or therestart-function in save- i mage (multiprocessingt isneeded too). It will deal correctly with
registration when the command line argument is supplied, otherwise runs the server until it can exit and then returns (the
application will exit because there will not be any other processes).

3. When the application aso needs to do other things, aut omat i on- ser ver - nai n can be used to run the server. Note
that with the default values when aut omat i on- ser ver - mai n runs the server it does not return until the server exits, so
you need to either pass: new process t, or runit onitsown process. You will aso need to consider whether to wait
when failing to register, and hence may want to pass: qui t-on-regi stry-failure nil.

See also

aut onati on-server-top-| oop
aut onati on-server-conmand-1ine-action
set-autonmtion-server-exit-delay

automation-server-top-loop Function

Summary

A function to run aCOM server.

Package

com

Signature

aut onati on-server-top-l oop &key exit-delay exit-function

Arguments

exit-delayl] A non-negative real number specifying atime in seconds.
exit-functiond A function designator.

Description

The function aut omat i on- server-top-loop callsco-initializeandstart-factories, andthen processes
messages, until the server can exit. Since COM works by messages, it will end up processing all COM requests.

exit-function determines when the server can exit. It defaultsto ser ver - can- exi t - p, which is normally the right function.
Thisreturnst when the COM server is not used and there are no other "working processes’. See the documentation for
server - can- exi t - p. When exit-function is supplied, it needsto be afunction of no arguments which returns true when the
server can exit. exit-function is used like await function: it is called repeatedly, it needsto be reasonably fast, and should not
wait for anything.

30

2 COM Reference Entries

Once the server can exit, aut omat i on- ser ver -t op- | oop delays exiting for another period of time, exit-delay seconds.
exit-delay defaultsto 5, and can be set by calling set - aut omat i on- server - exi t - del ay. If supplied, exit-delay is
passed to set - aut omat i on- server - exi t - del ay on entry. However, later callsto

set - aut onat i on- server - exi t - del ay can change the exit delay.

After the delay aut omat i on- server -t op- | oop checks again by calling exit-function. If this returns false it goes on to
process messages. Otherwise it stops the factories, callsco- uni ni ti al i ze and returns.

Notes

1. aut omat i on- server -t op- | oop interactswith thedel i ver keyword : qui t - when- no- wi ndows, such that the
delivered application does not qui t even after all CAPI windows are closed as long as
aut omat i on- server -t op- | oop hasnot returned.

2. aut omat i on- server -t op- | oop does not return while the server is active. Typically it will be running on its own
process.

3. aut omat i on-server-top-1 oop usesnp: gener al - handl e- event to process Lisp events, soitispossibletorunin
the same thread operations that rely on such messages. In particular, CAPI windows can start on the same process.
However, all COM input is processed in this thread, so it is probably better to start CAPI windows on other processes, so
that they do not interfere with each other.

4. aut omat i on- server -t op- | oop does not return a useful value.

See also

start-factories

stop-factories

aut omati on-server-nain
server-can-exit-p
set-autonmtion-server-exit-delay

call-com-interface Macro

Summary

Invokes a method from a particular COM interface.

Package

com

Signature

call-cominterface spec {arg}* => value*

spec :: = (interface-ptr interface-name method-name)

Arguments

spec The interface pointer and a specification of the method to be called.

arg] Arguments to the method (see 1.8.1 Data conver sion when calling COM methods for
details).

interface-ptr O] A form which is evaluated to yield a COM interface pointer.

31

2 COM Reference Entries

interface-namel] A symbol which names the com interface. It is not evaluated.

method-name] A symbol which names the method. It is not evaluated.

Values

value* [Values from the method (see 1.8.1 Data conver sion when calling COM methods for
details).

Description

Themacrocal | -com i nt er f ace invokes the method method-name for the COM interface interface-name, which should
the type or a supertype of the actual type of interface-ptr. args and value* are described in detail in 1.8.1 Data conversion

when calling COM methods.

Examples

This example invokes the COM method Get Typel nf o intheinterface | Di spat ch.

(defun get-type-info (disp tinfo &ey

(1 ocal e LOCALE_SYSTEM DEFAULT))

(rmul tipl e-val ue-bind (hres typeinfo)
(call-cominterface
(disp i-dispatch get-type-info)
tinfo locale)
(check-hresult hres 'get-type-info)
typei nfo))

See also

with-cominterface
guery-interface
add-r ef

rel ease

call-com-object

Summary

Invokes a COM method on a COM object.

Package

com

Signature
call -com obj ect spec {arg}* => value*
spec :: = (object class-name method-spec &key interface)

method-spec : : = method-name | (interface-name method-name)

32

Macro

2 COM Reference Entries

Arguments

spec
argQ]

object[
class-namel]
method-specl]
interfacel]
method-namel]

interface-name]

Values

value* [

Description

The object and a specification of the method to be called.

Arguments to the method (see 1.10.1 Data conver sion when calling COM obj ect
methods for details).

A formwhichis evaluated to yield a COM object.

A symbol which names the COM implementation class. It is not evaluated.
Specifies the method to be called. It is not evaluated.

A form.

A symbol naming the method to call.

A symbol.

Values from the method (see 1.10.1 Data conver sion when calling COM object methods
for details).

Themacro cal | - com obj ect invokes the method method-name for the COM class class-name, which should the type or a
supertype of the actual type of object. args and value* are described in detail in 1.10.1 Data conver sion when calling COM

object methods.

If method-spec contains an interface-name, then it should name the interface of the method to call. Thisisonly required if
the implementation class class-name has more than one method with the given method-name.

If interface is supplied, it should be aform that, when evaluated, yields a COM interface pointer. Thisisonly needed if the
definition of the method being called hasthe: i nt er f ace keyword in its class-spec.

Note that, because this macro requires a COM object, it can only be used by the implementation of that object. All other code
should usecal | - com i nt er f ace with the appropriate COM interface pointer.

Examples

(call-comobject (my-doc doc-inmpl nove) 0 0)

(call -com object (my-doc doc-inpl resize) 100 200)

See also

wi t h- com obj ect

guery-object-interface

call -cominterface

33

2 COM Reference Entries

check-hresult Macro

Summary

Signals an error if aresult code indicates afailure.

Package

com

Signature

check-hresul t hresult function-name

Arguments

hresultd Aninteger hresul t .

function-named A name for inclusion in the error message.
Description

The macro check- hr esul t checks hresult and returnsif it is one of the 'succeeded’ values, for instance S_OK or S_FALSE.
Otherwise check- hresul t signalsan error of type com er r or , which will include function-name in its message.

Examples

(check-hresult S OK "test") => nil

(check-hresult E_NO NTERFACE "test")
signals an error nmentioning "test"

See also
succeeded

hresul t
hresul t - equa

co-create-guid Function

Summary

Makes a unique refguid object.

Package

com

2 COM Reference Entries

Signature

co-create-guid &ey register => refguid

Arguments

register] A generalized boolean.
Values

refguid A r ef gui d object.
Description

The function co- cr eat e- gui d makes anew uniquer ef gui d object. If register istrue (the default), then the table of
known refguids is updated.

Examples

Make a GUID without registering it in the table of known refguids:

(comco-create-guid :register nil)
=>
#<REFGUI D FOO C76B64AF- 969A- 4EFF- 97BC- 6CE2EB65019B>

See also

refguid
nmake- gui d-fromstring

cominterface-refguid
gui d- equal

gui d-to-string
refguid-interface-nane

co-initialize Function

Summary

Initialize the COM library in the current thread.

Package

com

Signature

co-initialize &optional co-init

Arguments

co-init] Flags to specify the concurrency model and initialization options for the thread.

35

2 COM Reference Entries

Description

Thefunction co-i ni ti al i ze initializes COM for the current thread. This must be called by every thread that uses COM

client or server functions.

The default value of co-init isCO NI T_APARTMENTTHREADED. Other flags are allowed as for the dwColnit argument to

ColnitializeEx.

LispWorks takes care of cleaning up COM when athread exits, but you can aso do this explicitly using co- uni ni ti al i ze.

Examples

(co-initialize)

See also

co-uninitialize

com-error

Summary

The condition class used to signal errors from COM.

Package

com

Superclasses

cl:error

Subclasses

com di spat ch-i nvoke- excepti on-error

Condition Class

Initargs

:hresult Aninteger giving the hr esul t of the error.

: function- nanme Either ni | or astring or symbol describing the function that generated the error.
Readers

comerror-hresult
comerror-functi on-nane

Description

The condition classcom er r or isused by the Lisp COM APl when signaling errorsthat originate as hr esul t code from

COM.

36

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

2 COM Reference Entries

Examples

This function silently ignores the E_NO NTERFACE error:

(defun call-ignoring-nointerface-error (function)
(handl er - bi nd
((comerror
(1l anmbda (condition)
(when (hresult-equal (comerror-hresult
condi tion)
E_NO NTERFACE)
(return-from
cal | -ignoring-nointerface-error

nilt)))))

(funcall function)))
See also
check- hresul t

hresul t - equal
hresul t

com-interface System Class

Summary

The class of al COM interface pointers.

Package

com

Superclasses

t

Description
The system classcom i nt er f ace isused for all COM interface pointers.
Examples

(typep (query-interface ptr 'i-unknown) 'cominterface)
=> t

See also

call -cominterface

37

2 COM Reference Entries

com-interface-refguid Function

Summary

Return ther ef gui d object for anamed COM interface.

Package

com

Signature

cominterface-refguid interfaceename => refguid

Arguments

interface-namel] A symbol naming a COM interface.

Values

refguid Ther ef gui d object matching interface-name.
Description

The functioncom i nt er f ace- r ef gui d returnsar ef gui d object that matches interface-name, which should be a symbol
as described in 1.3 The mapping from COM namesto Lisp symbols. This definition of this COM interface must have been
converted to Lisp FLI definitionsasin 1.2.2 Generating FL | definitionsfrom COM definitions or 3.1 Including
Automation in a Lisp application.

Examples

(guid-to-string (cominterface-refguid 'i-unknown))
=> "00000000- 0000- 0000- CO00- 000000000046"

See also

refguid

gui d- equal
guid-to-string
make-gui d-fromstring
ref gui d-interface-nane

com-object Class

Summary

The ancestor of an COM object implementation classes.

38

2 COM Reference Entries

Package

com

Superclasses

cl : st andar d- obj ect

Subclasses

st andar d- i - unknown

Description

The classcom obj ect isthe ancestor of all COM object implementation classes. In general, it is more useful to inherit from

itssubclass st andar d- i - unknown, which provides an implementation of thei - unknown interface.

Examples

For a COM object ny- doc:

(typep my-doc 'comobject) =>t

See also

st andar d- i - unknown

com-object-destructor

Summary

Called when a COM object losesits |ast interface pointer.

Package

com

Signature

com obj ect - destruct or object

Method signatures

com obj ect -destructor (object standard-i-unknown)

com obj ect -destructor :around (object standard-i-unknown)

Arguments

39

Generic Function

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm

2 COM Reference Entries

Description

The generic function com obj ect - dest r uct or iscalled by the implementation of the class st andar d- i - unknown at the
point where the last COM interface pointer is removed for object, i.e. where the overall reference count becomes zero. After
this, object is known only to Lisp and is hot involved in any COM operations and will be freed as normal by the garbage
collector. The built-in primary method specializing on st andar d- i - unknown does nothing. The build-in around method

specializing on st andar d- i - unknown frees the memory used by the COM interface pointers. Typicaly, after methods are

defined to handle class-specific cleanups.

This function should not be called directly by user code.

Examples

(def met hod com obj ect-destructor :after
((ny-doc doc-inpl))

(close (docurent-file my-doc)))
See also

comobject-initialize
st andar d-i - unknown

com-object-from-pointer

Summary

Return the COM object that implements a particular COM interface pointer.

Package

com

Signature

com obj ect-from poi nter pointer => object

Arguments

pointer] A foreign pointer.
Values

object A COM object orni | .
Description

Function

The function com obj ect - f r om poi nt er returnsthe COM abject that implements pointer. The value of pointer should be

aforeign pointer or COM interface pointer that was created by LispWorks itself and implemented by a subclass of
com obj ect . If pointer isnot aknown COM interface pointer then ni | is returned.

Examples

(com obj ect-from pointer ny-ptr)

2 COM Reference Entries

See also

com obj ect

com-object-initialize

Summary

Called when a COM object getsitsfirst interface pointer.

Package

com

Signature

comobject-initialize object

Method signatures

comobject-initialize (object standard-i-unknown)

Arguments

Description

Generic Function

The generic function com obj ect -i ni ti al i ze iscalled by the built-in class st andar d- i - unknown at the point where
the first COM interface pointer is made for object. Prior to this, object is known only to Lisp and is not involved in any COM

operations. The built-in primary method specializing on st andar d- i - unknown does nothing.

This function should not be called directly by user code.

Examples

(def method comobject-initialize :after

((ny-doc doc-inpl))

(ensur e-open-docunent-file ny-doc))

See also

com obj ect -destructor
st andar d-i - unknown

com-object-query-interface

Summary

Called by the built in implementation of quer y-i nt er f ace.

41

Generic Function

2 COM Reference Entries

Package

com

Signature

com obj ect - query-interface object iid => interface-for-iid, skip-add-ref-p

Method signatures

com obj ect - query-interface (object standard-i-unknown) (iid t)

Arguments

object[] A COM object.

iidO A GUID foreign pointer.

Values

interface-for-iid] The new interface pointer or ni | if none.
skip-add-ref-p[] A boolean.

Description

The generic function com obj ect - quer y-i nt er f ace is called by the built-in implementation of quer y-i nt er f ace for
the class st andar d- i - unknown.

iid isthe GUID of the interface to return.

If skip-add-ref-pisni | thenquery-i nt er f ace will invoke the COM method | Unknown: : AddRef on interface-for-iid
before returning it.

The built-in primary method specializing on st andar d- i - unknown handlesthei - unknown interface and all the interfaces
specified by the def i ne- com i npl enent at i on form for the class of object.

In most cases, there is no need to specialize this generic function for user-defined classes.

You should not call com obj ect - quer y-i nt er f ace directly.

See also

define-cominpl enentati on
st andar d-i - unknown

co-task-mem-alloc Function

Summary

Allocates a block of foreign memory for use in COM method argument passing.

Package

com

42

2 COM Reference Entries

Signature

co-task-nmemal | oc &key type pointer-type initial-element initial-contents nelems => pointer

Arguments

typell A foreign type.

pointer-typel[] A foreign pointer type.

initial-element(] An object.

initial-contents A list.

nelems] Aninteger.

Values

pointer A pointer to the specified type or pointer-type.
Description

Thefunction co- t ask- mem al | oc callsthe C function CoTaskMenAl | oc() to allocate a block of memory.

type, pointer-type, initial-element, initial-contents and nelems are handled in the same way as for the function

fli:allocate-foreign-object.

Examples

Two ways to alocate memory for an integer:

(co-task-nmemalloc :type :int)

(co-task-memalloc :pointer-type '(:pointer :int))

See also

co-task-nemfree

co-task-mem-free

Summary

Frees ablock of foreign memory used in COM method argument passing.

Package

com

Signature

co-task-memfree pointer => pointer2

Function

2 COM Reference Entries

Arguments

pointer 0] A foreign pointer for the block to be freed.
Values

pointer2 The same as pointer.

Description

The function co-t ask- mem f r ee callsthe C function CoTaskMenfr ee() to free ablock of memory pointed to by pointer.
pointer should not be dereferenced after calling this function.

Examples

(co-task-nemfree ptr)

See also

co-task-nemal |l oc

co-uninitialize Function

Summary

Close the COM library in the current thread.

Package

com

Signature

co-uninitialize

Description

The function co- uni ni ti al i ze closesthe COM library on the current thread. This should be called when COM is no
longer required, for instance before exiting the application.

Examples

(co-uninitialize)

See also

co-initialize

2 COM Reference Entries

create-instance Function

Summary

Starts the implementation of aremote COM object and returns its interface pointer.

Package

com

Signature

create-instance clsid &ey unknown-outer clsctx riid errorp => interface-ptr

Arguments

clsidd A string or ar ef gui d giving aCLSID to create.

unknown-outerJ A COM interface pointer specifying the outer i - unknown if the new instance isto be
aggregated.

clsctxd A value from the CLSCTX enumeration.

riidO Anoptional r ef i i d giving the name of the COM interface return.

errorpd A boolean. The defaultist .

Values

interface-ptr A COM interface pointer for riid.

Description

Thefunction cr eat e- i nst ance creates an instance of the COM server associated with clsid and returns an interface pointer
foritsriid interface. If riidisni |, theni - unknown is used.

If the server cannot be started, then an error of type com er r or will besignaled if errorp istrue, otherwiseni I will be
returned.

If unknown-outer is non-nil, it will be passed as the outer unknown interface to be aggregated with the new instance.

clsctx indicate the execution contexts in which an object isto be run. It defaults to CLSCTX_SERVER.

Notes

You must initialize the COM runtime before calling cr eat e- i nst ance (see 1.4 Initializing the COM runtime).

To create ani - di spat ch interface and set an event handler, you can usecr eat e-i nst ance-wi t h- events.

Examples

(create-instance
" 000209FF- 0000- 0000- CO00- 000000000046")

2 COM Reference Entries

See also

refguid

refiid

i - unknown

creat e-obj ect
create-instance-w th-events

define-com-implementation Macro

Summary

Defines an implementation class for a particular set of interfaces.

Package

com

Signature

define-cominpl ementati on classname ({superclass-name}*) ({dot-specifier}*) {class-option}*

Arguments

class-name] A symbol naming the class to define.
superclass-namel] A symbol naming a superclass to inherit from.
slot-specifier] A slot description as used by def cl ass.
class-option[] An option as used by def cl ass.
Description

The macro def i ne- com i npl enent at i on definesast andar d- cl ass named class-name, which is used to implement a
COM abject. Normal def cl ass inheritance rules apply for slots and Lisp methods.

Each superclass-name argument specifies a direct superclass of the new class, which can be another COM implementation
classor any other st andar d- cl ass provided that com obj ect isincluded somewhere in the overall class precedence list.
To get the built-in handling for thei - unknown interface, inherit from st andar d- i - unknown (which isthe default
superclass if no others are specified).

dlot-specifiers are standard def cl ass slot definitions.
class-options are standard defclass options. In addition the following class-options are recognized:
(:interfaces interface-name*)

Each interface-name specifiesa COM interface that the object will implement. i - unknown
should not be specified unless the you wish to replace the standard implementation provided by
st andar d- i - unknown. If more than one interface-name is given then all the methods must
have different names (except for those which are inherited from a common parent interface).

(:inherit-from fromclass-name interface-name*)

46

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

2 COM Reference Entries

Thisindicates that the class will inherit the implementation of al the methods in the interfaces
specified by the interface-names directly from from-class-name, which must be one of the direct
or indirect superclasses of the class being defined. Without this option, methods from
superclasses are inherited indirectly and can be shadowed in the class being defined. Use of
:inherit-fromallowsvariousinternal space-optimizations.

For example, given aCOM classf oo- i npl which implementsthei - f oo interface, this
definition of bar - i npl :

(define-cominpl enentation bar-inmpl (foo-inpl)

0

(:interfaces i-fo0))

will allow methods fromii - f oo to be shadowed whereas this definition:

(define-cominplenentation bar-inmpl (foo-inpl)
(:interfaces i-foo)
(:inherit-fromfoo-inpl i-foo))

will result in an error if amethod fromi - f oo isredefined for bar - i npl .

(:dont-inpl enent interface-name*)

Thisoption tells st andar d- i - unknown that it should not respond to quer y-i nt er f ace for
the given interface-names (which should be parents of the interfaces implemented by the class
being defined). Normally, st andar d-i - unknown will respondto quer y-i nt er f ace fora
parent interface by returning a pointer to the child interface.

For example, given aninterfacei - f oo- i nt er nal and subinterfacei - f oo- publ i c, the
following definition:

(define-cominplenentation foo-inpl ()

0

(:interfaces i-foo-public))

specifiesthat f oo- i npl will respond to quer y-i nt er f ace fori - f oo- publ i ¢ and
i - foo-internal , whereas the following definition:;

(define-cominplenentation foo-inmpl ()
(:interfaces i-foo-public)
(:dont-inplenment i-foo-internal))

specifiesthat f oo-i npl will respond to quer y-i nt erf ace fori - f oo- publ i ¢ only.

Examples

(define-cominplenentation i-robot-inmpl ()
((tools :accessor robot-tools))
(:interfaces i-robot)

)

(define-cominpl ementation i-r2d2-inpl (i-robot-inpl)
0

(:interfaces i-robot i-r2d2)

)

47

2 COM Reference Entries

See also

def i ne- com net hod

st andar d-i - unknown

define-com-method

Summary

The macro def i ne- com et hod is used to define a COM method for a particular implementation class.

Package

com

Signature

defi ne-com net hod method-spec (class-spec { arg-spec}*) {form}*

method-spec : : =
class-spec : :
arg-spec :
Arguments
method-specl]
class-spec

arg-spec
formO

method-name]
interface-namel]
this[]
class-namel]

interface]

parameter-namel]

directiond

pass-stylel]

Description

method-name | (interface-name method-name)
= (this class-name &key interface)

. = (parameter-name [direction [pass-style]])

Specifies the method to be defined.

Specifies the implementation class and variables bound to the object within forms.
Describes one of the method's arguments.

Forms which implement the method. The value of the final form is returned as the result
of the method.

A symbol naming the method to define.

A symbol.

A symbol which will be bound to the COM object whaose method is being invoked.
A symbol naming the COM implementation class for which this method is defined.

A optional symbol which will be bound to the COM interface pointer whose method is
being invoked. Usually thisis not needed unless the interface pointer is being passed to
some other function in the implementation.

A symbol which will be bound to that argument's value while forms are eval uated.
Specifies the direction of the argument, either : i n, : out or: i n-out If specified, it must

match the definition of the interface. The default is taken from the definition of the
interface.

Specifies how the argument will be converted to aLisp value. It can be either : | i sp or
:foreign, thedefaultis: |i sp.

The macro def i ne- com net hod defines a COM method that implements the method method-name for the COM
implementation class class-name. The extended method-spec syntax containing interface-name is required if class-name

48

Macro

2 COM Reference Entries

implements more than one interface with a method called method-name (anal ogous to the C++ syntax
I nt er f aceName: : Met hodNare).

When the COM method is called, each formis evaluated in alexical environment containing the following bindings.

The symbol thisis bound to the instance of the COM implementation class on which the method is being invoked. The
symbol thisis also defined as alocal macro (asif by wi t h- com obj ect), which allows the body to invoke other methods on
the instance.

If present, the symbol interface is bound to the interface pointer on which the method is being invoked.

Each foreign argument is converted to a Lisp argument as specified by its direction and pass-style and the corresponding
parameter-name is bound to the converted value. See 1.9.6 Data conversion in define-com-method for details.

The value of the final form should be an hr esul t , which is returned from the COM method.

If an error isto be returned from an Automation method, the function set - er r or - i nf o can be used to provide more details
to the cdler.

Examples

(define-comnethod (i-robot rotate)
((this i-robot-inpl)
(axis :in)
(angl e-delta :in))
(let ((joint (find-joint axis)))
(rotate-joint joint))
S K)

See also
define-cominpl enentati on

set-error-info
set -vari ant

find-clsid Function

Summary

Searches the registry for aGUID or Progld.

Package

com

Signature

find-clsid name &optional errorp => refguid

Arguments
name] A string or ar ef gui d.
errorpl] A generalized boolean.

49

2 COM Reference Entries

Values
refguid Arefguid.
Description

Thefunction f i nd- cl si d searches for the supplied GUID or Progld in the registry.

name can be a string representing a GUID (with or without the curly brackets) or a string containing a Progld. Otherwise
name can be ar ef gui d, which is simply returned.

If fi nd- cl si d failsto find the GUID, it either signals an error or returns ni | , depending on the value of errorp. The default
value of errorpist .

Examples

To find the GUID of the Explorer ActiveX:

(comfind-clsid "Shell.Explorer")

get-object Function

Summary

Returns an interface pointer for a named object.

Package

com

Signature

get - obj ect name &key riid errorp => interface-ptr

Arguments

namel] A string.

riid0C An optional r ef i i d giving the name of the COM interface return.
errorpd] A boolean. The default valueist .

Values

interface-ptr A COM interface pointer for riid.

Description

The function get - obj ect finds an existing object named by name in the Running Object Table or activates the object if it is
not running.

get - obj ect returns an interface pointer for the object's riid interface. If riidisni | , theni - unknown is used.

If an error occurs, an error of type com err or will besignaled if errorp is non-nil, otherwiseni I will be returned.

50

2 COM Reference Entries

Examples

If C:\t enp\ spreadsheet . x| s isopen in Microsoft Excel 2007, then its WorkBook interface can be obtained using:

(get-object "c:\\Tenp\\spreadsheet. x| s"
criid "i-dispatch)

See also
create-i nstance

Creat e- obj ect
get - acti ve-obj ect

guid-equal Function

Summary

Compares the GUID datain two GUID pointers.

Package

com

Signature

gui d- equal guidl guid2 => flag

Arguments

guid1d A foreign pointer to a GUID object.

guid20 A foreign pointer to a GUID object.

Values

flag A boolean, trueif guidl and guid2 contain the same GUID data.
Description

The function gui d- equal comparesthe GUID datain guidl and guid2 and returns true if the datais identical.

Examples

(guid-equal (cominterface-refguid 'i-unknown)
(cominterface-refguid 'i-dispatch))

=> nil

(guid-equal (cominterface-refguid 'i-unknown)
(rmake-guid-fromstring

" 00000000- 0000- 0000- CO00- 000000000046"))
=> t

51

2 COM Reference Entries

See also

refguid
cominterface-refguid

guid-to-string
make-gui d-fromstring
refguid-interface-nane

guid-to-string

Summary

Convertsa GUID to a string of hex characters.

Package

com

Signature

gui d-to-string guid => guid-string

Arguments

guidd A foreign pointer to a GUID object.

Values

guid-string A string in the standard hex format for GUIDs.
Description

The function gui d- t o- st ri ng converts the datain guid to a string of hex characters in the standard-format.

Examples

(guid-to-string (cominterface-refguid 'i-unknown))
=> "00000000- 0000- 0000- CO00- 000000000046"

See also

refguid
cominterface-refguid
gui d- equal

make-gui d-fromstring
ref gui d-interface-nane

52

Function

2 COM Reference Entries

hresult FLI Type Descriptor

Summary

The FLI type corresponding to HRESULT in C/C++.

Package

com

Syntax

hresul t

Description

TheFLI typehresul t isasigned 32 bit integer. When used as the result type of a COM method, the value E_UNEXPECTED
isreturned if the COM method body does not return an integer.

See also

hresul t - equal
check- hresul t

hresult-equal Function

Summary

Compares one hr esul t to another.

Package

com

Signature

hresul t - equal hresl hres2 => flag

Arguments

hres10 Aninteger hresul t .

hres20 Aninteger hresul t.

Values

flag A boolean, trueif hresl and hres2 are equal.
Description

The function hr esul t - equal compares hresl and hres2 and returns true if they represent the same hr esul t . Thisfunction

53

2 COM Reference Entries

differs from the Common Lisp function eql because it handles signed and unsigned versions of each hr esul t .

Examples

E_NOTI MPL is negétive, so:

(eql E_NOTI MPL 2147500033)
=> nil

(hresult-equal E_NOTI MPL 2147500033)
=> t

See also
hresul t

check- hresul t
com error

interface-ref

Summary

Accesses a place containing an interface pointer, maintaining reference counts.

Package

com

Signature
i nterface-ref iptr-place => iptr

setf (interface-ref iptr-place) iptr => iptr

Arguments

iptr-placel] A place containing a COM interface pointer or ni | .
iptr] A COM interface pointer or ni | .

Values

iptr] A COM interface pointer or ni | .

Description

The accessor i nt er f ace- r ef isuseful when manipulating a place containing an interface pointer.

Accessor

Theset f form increments the reference count, asif by add- r ef , of iptr, unlessitisni | . It then decrements the reference
count, asif by r el ease, of the existing value in iptr-place, unlessthisisni | . Note that this order isimportant in the case

that the new value is the same as the current value. Finally the value of placeiptr-placeis set toiptr.

Thereader i nt er f ace- ref simply returns the interface pointer stored in iptr-place and does no reference counting. It may

be useful in aform which both reads and writes a place likei ncf .

54

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm

2 COM Reference Entries

See also

add- r ef
rel ease

I-unknown COM Interface Type

Summary

The Lisp hame for the | Unknown COM interface.

Package

com

Description

The COM interface typei - unknown isthe name given to the | Unknown COM interface within Lisp. The name results from
the standard mapping described in 1.3 The mapping from COM namesto Lisp symboaols.

Examples

(query-interface ptr 'i-unknown)

See also

st andar d-i - unknown
i -di spatch

make-factory-entry Function

Summary

Makes a object which can be used to register a class factory.

Package

com

Signature

make-factory-entry &key clsid implementation-name constructor-function constructor-extra-args friendly-name prog-id
version-independent-prog-id

Arguments

clsidd The CLSID of the coclass.
implementation-name A Lisp symbol naming the implementation class.

constructor-function1 A function to construct the object.

55

2 COM Reference Entries

constructor-extra-args(]
Extra arguments to pass to constructor-function.

friendly-namel] A string.
prog-|d|:| A String.
version-independent-prog-idC]

A string.
Description

The function make- f act or y- ent r y makes an object to contain all the information for class factory registration in the COM
runtime for clsid. This object should be passedtor egi st er - cl ass-f act or y- ent ry to perform the registration. This
done automatically if you use def i ne- aut omat i on- conponent described in the 3 Using Automation.

If constructor-functionisni |, the default constructor is used which makes an instance of implementation-name and queries it
for ai - unknown interface pointer. The default constructor also handles aggregation.

If constructor-function is non-nil, it is called by LispWorks with the unknown-outer (non-nil if aggregation is being used),
the II1D of the interface to return and the values in constructor-extra-args. It should return three values: the hr esul t , the
COM interface pointer and the instance of implementation-name.

constructor-extra-args supplies extra arguments to pass to constructor-function. It defaultsto alist containing
implementation-name.

friendly-name is the name of the coclass for use by application builders.

prog-id and version-independent-prog-id specify the ProglD and VersionlndependentProgl D of the coclasswhen it is
registered.

Examples

(make-factory-entry
:clsid (nmake-guid-fromstring
" 7D9EB762- E4E5- 11D5- BF02- 000347024BE1")
(i mpl emrent ati on-nane ' doc-i npl
sprog-id "Wordifier.Docunment. 1"
:versi on-i ndependent - prog-id "Wrdifier.Docunment"”
:friendl y-nanme "Wordifier Docunent")

See also

register-class-factory-entry

make-guid-from-string Function

Summary

Make ar ef gui d object from a hex string.

Package

com

56

2 COM Reference Entries

Signature

make- gui d-from string string &opti onal

Arguments

stringdd A string in the standard hex format for GUIDs.

interface-namel] A symbol naming a COM interface. If non-nil, refguid will be will added to the table of
known r ef gui ds.

Values

refguid A r ef gui d object matching string.

Description

interface-name => refguid

The function nake- gui d- from st ri ng makesar ef gui d object from string. If the GUID data matches a known
r ef gui d, then that is returned. Otherwise, anew r ef gui d is created and returned. If interface-nameis non-nil, then the

table of known r ef gui dsisupdated. If the GUID is already known under a different name, an error is signaled.

Examples

ThisGUID is apredefined onefor i - unknown:

(refguid-interface-nane
(make-guid-fromstring

" 00000000- 0000- 0000- CO00- 000000000046"))

=> | - UNKNOVWN

See also

refguid
cominterface-refguid
gui d- equal
guid-to-string
refqguid-interface-nane

midl

Summary

Convertsan IDL fileinto Lisp FLI definitions.

Package

com

Signature

m dl file &ey package depth mapping-options output-file load import-search-path

57

Function

2 COM Reference Entries

Arguments

filed A pathname designator.
packagel] A package designator.

depth[A non-negative integer.
mapping-optionsC] Anadlist.

output-filed ni |, t or apathname designator.
loadO A generalized boolean.

import-search-pathd] A list of pathname designators or : def aul t.

Description

The function ni dI isused to convert an IDL filefileinto Lisp FLI definitions, which is necessary before the typesin thefile
can be used from the Lisp COM API. See 1.3 The mapping from COM namesto Lisp symbolsfor the details on how these
FLI definitions are named.

package specifies the package in which definitions are created. It defaultsto the current package.

depth specifies how many levelsof IDL i nport statement to convert to Lisp. This defaults to 0, which means only convert
definitionsfor the IDL file itself. Imported files should be converted and loaded before the importing file. Some of the
standard files are preloaded, so should not be loaded again (see 1.2.3 Standard IDL files).

mapping-options allows options to be passed controlling the conversion of individual definitions.

If output-fileisni | (the default), the IDL fileis compiled in-memory. Otherwise aLisp fad is produced so the definitions
can be reloaded without requiring recompilation. If output-fileist then thefad is named after the IDL file, otherwise output-
fileis used as a pathname designator to specify the name of the fadl file.

If load is true (the default) then any fasl produced is loaded after being compiled. Otherwise, the fasl must be loaded
explicitly with | oad. Thisargument has no effect if output-fileisni | .
Import paths

When thefilethat mi dl processes contains import statements (which isthe normal case, because at least "unknwn.idl" is
needed), mi dl looks for the imported file in these directories:

1. A directory in import-search-path, or if itis: def aul t inthe directory of file.

Note: you can pass import-search-path asni | to prevent searching in the directory of file. In many cases that isthe more
useful behavior.

2. Thedirectoriesin thelist that was set by i dl - set -i nport - pat hs, orifitis: def aul t thedirectoriesin the
I NCLUDE environment variable.

3. Thedirectoriesin thelist that is returned by ni dl - def aul t -i nport - pat hs.

The recommended way of getting the standard filesto import isto install Windows SDK from microsoft.com. If you install it
in the default place, ni dl - def aul t - i nport - pat hs should be able to find the right paths. Thus normally installing the
Windows SDK is all you need to do to get the standard midl files.

Notes

mi dl requiresthat typeslike | Di spat ch are declared before they are used.

58

http://www.lispworks.com/documentation/HyperSpec/Body/f_import.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

2 COM Reference Entries

Examples

To compilenyfile.idl into memory:

(midl "nyfile.idl™")
To compilermyfile.idl tonyfile.ofasl:

(mdl "nyfile.idl" :output-file t :load nil)
Tocompilenmyfile.idl tonyfile.ofasl andloadit:

(mdl "myfile.idl" :output-file t)
See also

‘mdl-file

midl-default-import-paths

Summary

Returns the default directories for mi dl to search for imported idl files.

Package

com

Signature

m dl -def aul t -i nport - pat hs => paths-list

Values

paths-list A list.

Description

Function

The function ni dI - def aul t - i nport - pat hs returns the default directories for i dl to search for imported idl files. See

m dl for more details.

You can cal mi dl - def aul t -i nport - pat hs to see what paths i dl isgoing to use. Microsoft do not actually document
where you should be looking for imported files, so there isan element of guessing inni dl - def aul t - i nport - pat hs, but

if you install the Windows SDK in the default place it should work.

If the Windows SDK isnot installed, mi dl - def aul t - i nport - pat hs triesto see if the PlatformSDK (the previous

incarnation of the Windows SDK) isinstalled, and usesit instead.
See also

mi dl

59

2 COM Reference Entries

:midl-file Defsystem Member Type

Summary

Used to include IDL filesin a Lisp system definition.

Package

com

Description
The defsystem member type: ni dI - fi | e can be used to include IDL filesin a Lisp system definition.

When afileisgiventhetype: m dl - fi | e, compiling the system will compile the IDL file to produce afasl. Loading the
system will load thisfasl. The: package, : mappi ng- opti ons and: i nport - sear ch- pat h keywords can specified as for
m dl .

Examples

Include the file nyfile.idl in a system
(defsystem nmy-system ()
cmenbers (("nyfile.idl" :type :mdl-file)))
See also
m dl

midl-set-import-paths Function

Summary

Setsan internal list for mi dl to search for imported files.

Package

com

Signature

m dl - set-inport-pat hs pathslist
Arguments

paths-list0] A list of path-specs (see below), a single path-spec or the keyword : def aul t .

Description

Thefunction i dI - set -i nport - pat hs setsaninternal list for mi dl to search for imported files. Thislist overridesthe
value of the I NCLUDE environment variable.

60

2 COM Reference Entries

paths-list can be either alist of path-specs, where a path-spec is either a pathname or a string, or a single path-spec, which is
interpreted as alist of this path-spec. It can also be the keyword : def aul t, which resetsit so it usesthe | NCLUDE
environment variable.

Notes

In most cases mi dI should be able to find the imported filesin the list that is returned by ni dl - def aul t - i nport - pat hs,
soni dl - set -i nport - pat hs should rarely be useful.

See also

mi dl

query-interface Function

Summary

Attempts to obtain a COM interface pointer for one interface from another.

Package

com

Signature

query-interface interface-ptr iid &ey errorp => interface-for-iid

Arguments

interface-ptrJ A COM interface pointer to be queried.
iid0 Theiid of aCOM interface.

errorpl] A boolean. The defaultist .

Values

interface-for-iid The new COM interface pointer or ni | .
Description

The function quer y- i nt er f ace function invokes the COM method | Unknown: : Quer yI nt er f ace to attempt to obtain an
interface pointer for iid from interface-ptr.

iid can be asymbol naming a COM interface or ar ef gui d foreign pointer containing itsiid.
If I Unknown: : Quer yl nt er f ace returns successfully then the new interface pointer interface-for-iid is returned.

If errorpistrue, thenni | isreturned if the interface pointer cannot be found, otherwise an error of typecom error is
signaled.

Examples
(query-interface p-foo 'i-bar)

61

2 COM Reference Entries

See also

refguid
com error

add-r ef

rel ease
with-tenp-interface
wi th-query-interface

query-object-interface Macro

Summary

Obtains a COM interface pointer for a particular interface from a COM object.

Package

com

Signature

query-object-interface classname object iid &ey ppv-object => hresult, interface-ptr-for-iid

Arguments

class-nameld A COM class name.

object[A COM object to be queried.
iid0 Theiid of a COM interface.
ppv-object] A foreign pointer or ni | .
Values

hresult Thehresul t.

interface-ptr-for-iidd]
The new interface pointer or ni | if none.
Description

The macro quer y- obj ect - i nt er f ace invokesthe COM method | Unknown: : Quer yl nt er f ace to attempt to obtain an
interface pointer for iid from object.

iid can be a symbol naming a COM interface or ar ef gui d foreign pointer containing itsiid.
class-name must be the COM object class name of object or one of its superclass names.

Thefirst value istheinteger hr esul t from the call to | Unknown: : Quer yl nt er f ace. If the result indicates success, then
interface-ptr-for-iid is returned as the second value. If ppv-object is non-nil, then interface-ptr-for-iid will be stored there as
well.

Examples

(query-object-interface foo-inpl p-foo 'i-bar)

62

2 COM Reference Entries

See also

refguid
hresul t

refguid

Summary

A FLI type used to refer to GUID objects.

Package

com

Syntax

ref gui d

Description

FLI Type Descriptor

The FLI typer ef gui d typeisapointer to a GUID structure, like the type REFGUI Din C. In addition, atable of named
r ef gui dsismaintained, using the names chosen when COM interface types are converted to aLisp FLI definitions by ni dI

or parsing atype library.

Examples

(typep (cominterface-refguid 'i-unknown)

=> t

See also

cominterface-refguid
gui d- equal
guid-to-string
nmeke-gui d-fromstring
refqguid-interface-nane
refiid

ni di

refguid-interface-name

Summary

Returns the COM interface name of ar ef gui d if known.

Package

com

" ref gui d)

63

Function

2 COM Reference Entries

Signature

ref gui d-i nterface-nane refguid => interface-name

Arguments

refguidC] A r ef gui d object.

Values

interface-name A symbol naming the COM interface of refguid.
Description

The function r ef gui d- i nt er f ace- nane returns a symbol naming the COM interface of refguid, which must be a
r ef gui d object known to Lisp.

Examples

(refguid-interface-nane
(make-guid-fromstring
" 00000000- 0000- 0000- CO00- 000000000046"))
=> | - unknown

See also

refguid
cominterface-refguid
gui d- equal
guid-to-string
make-gui d-fromstring

refiid FLI Type Descriptor

Summary

A FLI type used to refer toiids.

Package

com

Syntax
refiid
Description

TheFLI typerefiidisauseful converted type for 1D argumentsto foreign functions. When given a symboal, it looks up the
GUID asif by calling com i nt er f ace- r ef gui d. Otherwise the value should be aforeign pointer to a GUID structure,
which is passed directly without conversion.

2 COM Reference Entries

Examples
Given the definition of print -i i d:

(fli:define-foreign-function print-iid
((iid refiid)))

then these two forms are equival ent:

(print-iid "i-unknown)
(print-iid (cominterface-refguid 'i-unknown))
See also
cominterface-refguid
refguid
register-class-factory-entry Function
Summary

Registers the description of a class factory.

Package

com

Signature

regi ster-cl ass-factory-entry new-factory-entry

Arguments

new-factory-entry(] A factory entry from make- f act ory-entry.

Description

Thefunctionr egi st er - cl ass-f act or y- ent ry registers new-factory-entry with the COM runtime so that

regi ster-server, unregister-server,start-factories andstop-factories will know about the coclassin the
factory entry. Thisis done automaticaly if you usedef i ne- aut omat i on- conponent described in the 3 Using
Automation.

Examples

See also

make-factory-entry
start-factories
stop-factories
regi ster-server
unr egi ster-server

65

2 COM Reference Entries

register-server Function

Summary

Externally registers al class factories known to Lisp.

Package

com

Signature

regi ster-server &key clsctx

Arguments

clsctxd A value from the CLSCTX enumeration.

Description

Thefunction r egi st er - ser ver updates the Windows registry to contain the appropriate keys for all the class factories
registered in the current Lisp image. For Automation components, the type libraries are registered aswell. During
development, the type library will be found wherever the system definition specified, but after using LispWorks delivery it
must be located in the directory containing the application's executable or DLL.

regi ster-server should be called when an application isinstaled, usually by detecting the/ RegSer ver command line
argument.

clsctx indicates the execution contexts in which class factories should be used. It defaultsto CLSCTX | NPROC _SERVER.

When running on 64-bit Windows, 32-bit LispWorks updates the 32-bit registry view and 64-bit LispWorks updates the 64-hit
registry view. LispWorks does not change the registry reflection settings.

Examples

(defun start-up-function ()
(cond ((rmenber "/RegServer"
system *| i ne-argunments-1list*
:test 'equal p)
(regi ster-server))
((nmember "/ UnRegServer"
system *| i ne-argunments-1list*
:test 'equal p)
(unregi ster-server))
(t
(co-initialize)
(start-factories)
(start-application-nmain-1oop)))
(quit))

See also
unr egi st er-server

regi ster-class-factory-entry
start-factories

66

2 COM Reference Entries

stop-factories
set-register-server-error-reporter

release

Summary

Decrements the reference count of an interface pointer.

Package

com

Signature

rel ease interface-ptr => ref-count

Arguments

interface-ptr 0 A COM interface pointer.
Values

ref-count The new reference count.
Description

Function

Each COM interface pointer has a reference count which is used by the server to control itslifetime. The functionr el ease

should be called whenever areference to interface-ptr is being removed. The function invokes the COM method
I Unknown: : Rel ease sotheform (rel ease ptr) isequivalenttousingcal | -com i nt erf ace asfollows:

(call-cominterface (ptr i -unknown rel ease))

Examples

(rel ease p-foo)

See also

add-r ef

i nterface-ref
query-interface
with-tenp-interface

server-can-exit-p

server-in-use-p

Summary

Predicates for whether a COM server isin use or can exit.

67

Functions

2 COM Reference Entries

Package

com

Signatures
server-can-exit-p => result

server-in-use-p => result

Values

result A boolean.

Description

Thefunction ser ver - i n- use- p returns true when the COM server isin use, which means one or more of the following:
1. There are live objects other than the class factories.
2. Any of the class factories has more than one reference.
3. The server islocked by aclient call to the COM method | O assFact ory: : LockSer ver.

The function ser ver - can- exi t - p returnstrue if the server can exit, which means that the server is not in use (that is,
(not (server-in-use-p)) returnst), and aso that there are no other "working processes', which meansthat all other
processes except the onethat callsser ver - can- exi t - p are"Internal servers' (seenp: pr ocess-run-functi on).

The main purpose of ser ver - can- exi t - p isto bethe exit-function for aut omat i on- ser ver - t op- | oop, either asthe
default or called from a supplied exit-function.

See also

aut onati on-server-top-| oop

set-automation-server-exit-delay Function

Summary

Sets exit delay used by aut omat i on- server -t op- | oop.

Package

com

Signature

set -aut ormati on-server-exit-del ay exit-delay

Arguments

exit-delayl] A non-negative real number specifying atime in seconds.

68

2 COM Reference Entries

Description

Thefunction set - aut omat i on- server - exi t - del ay sets exit-delay as the exit delay used by
aut omat i on- server -t op- | oop to delay exiting once the server is unused.

set - aut omat i on- server - exi t - del ay can be called both before and after aut omat i on- ser ver -t op- | oop, and can
be used repeatedly after aut omat i on- server -t op- | oop was called to dynamically change the exit delay. The setting
persists over saving and delivering an image, so it can be used in the delivery script too.

See also

aut onati on-server-top-| oop

set-register-server-error-reporter Function

Summary

Allows control over the reporting, logging or debugging of failuresfromr egi st er - server and unr egi st er - server.

Package

com

Signature

set-register-server-error-reporter func => func

Arguments

funcl] A function or afbound symbol.
Values

func A function or afbound symbol.
Description

Thefunctionset -regi ster-server-error-reporter setsupafunction func that is caled to report when calls and
automatic callstor egi st er - server or unr egi st er - server viathe system-defined entry points of aDLL fail.

func should be a function of two arguments.

The automatic calls happen when registering/unregistering a LispWorks DLL that was saved or delivered with the keyword
:cominits: dl | -exports (seel.2.4 Makinga COM DLL with LispWorks). If such acall fails, func isinvoked with the
name of the function that failed (currently either r egi st er - ser ver or unr egi st er - ser ver) and the condition. func
should report the failure in a useful way, which would normally mean logging it in a place where you can inspect it later.

Notes

1. After func returns or throws out, the automatic call returns with an appropriate failure code, and the code that tries to
register (that is, the program that called DI | Regi st er Ser ver or DI | Unr egi st er Ser ver) should normally print an
error too. For example, r egsvr 32 would raise adialog by default. However, this dialog will not contain any
information about what failed inside Lisp.

69

2 COM Reference Entries

2. By default (that is, if you do not call set -regi st er-server-error-reporter) any sucherror issimply printed to
standard output.

3. func can force entering the debugger using cl : i nvoke- debugger , which may sometimes be useful during
development.

See also

regi ster-server
unr egi st er-server

s ok Macro

Summary

Compares aresult code to thevalue of S_CK.

Package

com

Signature

s_ok hresult => flag

Arguments

hresultd) Aninteger hresul t .
Values

flag A boolean.
Description

The macro s_ok checks hresult and returns true if its value is that of the constant S_OK. Otherwise it returns false.
Examples

(S K S OK) =>t

(S_OK S_FALSE) => ni l

(S_OK E_NO NTERFACE) => nil

See also

succeeded
hresul t
hresul t - equa
check-hresul t

70

http://www.lispworks.com/documentation/HyperSpec/Body/f_invoke.htm

2 COM Reference Entries

standard-i-unknown Class

Summary

A complete implementation of thei - unknown interface.

Package

com

Superclasses

com obj ect

Subclasses

standard-i - di spat ch
st andard-i - connecti on- poi nt - cont ai ner

Initargs

: out er - unknown An optional interface pointer to the outer unknown interface if this object is aggregated.

Description
Theclassst andar d- i - unknown provides a complete implementation of thei - unknown interface.

The class provides a reference count for the object which calls the generic function com obj ect -i ni ti al i ze when the
object is given areference count and com obj ect - dest r uct or when it becomes zero again. These generic functions can
be specialized to perform initialization and cleanup operations.

The class also provides an implementation of quer y-i nt er f ace which callsthe generic function
com obj ect - quer y-i nt er f ace. The default method handlesi - unknown and all the interfaces specified by the
defi ne-com i npl enent at i on form for the class of the object.

Thereis support for aggregation viathe : out er - unknown initarg, which is also passed by built-in class factory
implementation.

Examples

Inheriting from anon-COM class requires st andar d- i - unknown to be mentioned explicitly:

(define-cominpl enentation doc-inpl
(docunent - m xi n
st andar d- i - unknown)

0

(:interfaces i-doc))

See also

define-comi npl enent ati on

st andar d-i - di spatch

st andar d-i - connecti on- poi nt - cont ai ner
comobject-initialize

71

2 COM Reference Entries

com obj ect -destructor
com obj ect-query-interface

com obj ect
i - unknown

start-factories

Summary

Starts al the registered class factories.

Package

com

Signature

start-factories &optional clsctx

Arguments

clsctx The CLSCTX in which to start the factories.

Description

Thefunctionstart-factori es startsall the registered class factories in the given clsctx, which defaults to

Function

CLSCTX_LOCAL_SERVER. This function should be called once when a COM server application startsiif it has externally

registered class factories.

See also

regi ster-class-factory-entry

stop-factories
regi ster-server
unr egi st er-server
co-initialize

stop-factories

Summary

Stops al the registered class factories.

Package

com

Signature

stop-factories

72

Function

2 COM Reference Entries

Description

The function st op- f act ori es stopsall the registered class factories. This function should be called once before a COM

server application exitsif it has externally registered class factories.

See also

regi ster-class-factory-entry
start-factories

regi ster-server

unr egi st er-server
co-uninitialize

succeeded

Summary

Checks an hr esul t for success.

Package

com

Signature

succeeded hresult => flag

Arguments

hresultd] Aninteger hresul t .
Values

flag A boolean.
Description

The macro succeeded checks hresult and returns true if the it is one of the 'succeeded' values, for instance S_OK or

S FALSE. Otherwise, it returns false.

Examples

(succeeded S OK) =>t

(succeeded E_NO NTERFACE) => nil

See also

check-hresult
hresul t
hresul t - equa
s _ok

73

Macro

2 COM Reference Entries

unregister-server Function

Summary

Externally unregisters all class factories known to Lisp.

Package

com

Signature

unr egi st er-server

Description

The function unr egi st er - ser ver updates the Windows registry to remove the appropriate keys for al the class factories
registered in the current Lisp image. For Automation components, the type libraries are unregistered as well.

This function should be called when an application is uninstalled, usually by detecting the/ UnRegSer ver command line
argument.

When running on 64-bit Windows, 32-bit LispWorks updates the 32-bit registry view and 64-bit LispWorks updates the 64-hit
registry view. LispWorks does not change the registry reflection settings.

Examples

(defun start-up-function ()
(cond ((rmenber "/UnRegServer"
system *| i ne-arguments-1ist*
:test 'equal p)
(unregister-server))
((nmember "/ RegServer"
system *| i ne-arguments-1list*
:test 'equal p)
(register-server))
(t
(co-initialize)
(start-factories)
(start-application-nmain-|oop)))
(quit))

See also

regi ster-server

regi ster-class-factory-entry
start-factories

stop-factories
set-register-server-error-reporter

74

2 COM Reference Entries

with-com-interface Macro

Summary

Used to simplify invocation of several methods from a particular COM interface pointer.

Package

com

Signature

with-cominterface disp interface-ptr {form}* => values

disp :: = (dispatch-function interface-name)

Arguments

disp The names of the dispatch function and interface.

interface-ptrJ A formwhich is evaluated to yield a COM interface pointer that implementsinterface-
name.

formO A form to be evaluated.

dispatch-functionC A symbol.

interface-name] A symbol which names the COM interface. It is not evaluated.

Values

valuesld The values returned by the last form.

Description

Themacrowi t h-com i nt er f ace evaluates each formin alexical environment where dispatch-function is defined asalocal
macro.

dispatch-function can be used to invoked the methods on interface-ptr for the COM interface interface-name, which should
be the type or a supertype of the actual type of interface-ptr.

dispatch-function has the following signature:

dispatch-function method-name arg* => values

where:
method-name A symbol which names the method. It is not evaluated.
arg Arguments to the method (see 1.8.1 Data conver sion when calling COM methods for details).
values Values from the method (see 1.8.1 Data conver sion when calling COM methods for details).
Examples

This example invokes the COM method Get Typel nf o intheinterface | Di spat ch.

75

2 COM Reference Entries

(defun get-type-info (disp tinfo &ey
(1 ocal e LOCALE_SYSTEM DEFAULT))
(rmul tipl e-val ue-bind (hres typeinfo)
(with-cominterface (call-disp i-dispatch) disp
(call-disp get-type-info tinfo |ocale))
(check-hresult hres 'get-type-info)
typei nfo))

See also

call-cominterface

with-com-object Macro

Summary

Used to simplify invocation of several methods from a given COM object.

Package

com

Signature

wi t h-com obj ect disp object {form}* => values

disp :: = (dispatch-function class-name &key interface)

Arguments

disp The names of the dispatch function and object class.
object A form which is evaluated to yield a COM object.
formO A form to be evaluated.

dispatch-function A symbol.

class-namel] A symbol which names the COM implementation class. It is not evaluated.
interfacel] A form.

Values

valuesd The values returned by the last form.

Description

Themacrowi t h- com obj ect evaluates each formin alexical environment where dispatch-function is defined as alocal
macro.

dispatch-function can be used to invoked the methods on object for the COM class class-name, which should be the type or a
supertype of the actual type of object.

dispatch-function has the following signature:

dispatch-function method-spec arg* => values

76

2 COM Reference Entries

method-spec : : = method-name | (interface-name method-name)
where:
method-spec Specifies the method to be called. It is not evaluated.
method-name A symbol naming the method to call.
interface-name A symbol naming the interface of the method to call. Thisisonly required if the implementation
class class-name has more than one method with the given method-name.
arg Arguments to the method (see 1.10.1 Data conver sion when calling COM object methods for
details).
values Values from the method (see 1.10.1 Data conver sion when calling COM object methods for
details).

If interface is supplied, it should be aform that, when evaluated, yields a COM interface pointer. Thisisonly needed if the
definition of the method being called hasthe: i nt er f ace keyword in its class-spec.

Note that, because wi t h- com obj ect requiresa COM object, it can only be used by the implementation of that object. All
other code should usewi t h- com i nt er f ace with the appropriate COM interface pointer.

Examples

(Wi th-comobject (call-my-doc doc-inpl) my-doc
(call -ny-doc nove 0 0)
(call -ny-doc resize 100 200))

See also
cal |l -com obj ect

defi ne- com net hod
wi th-comtinterface

with-query-interface Macro

Summary

Used to smplify reference counting when querying a COM interface pointer.

Package

com

Signature

wi t h-query-interface disp interface-ptr {form}* => value*

disp :: = (punknown interface-name &key errorp dispatch)

Arguments

interface-ptr] A formwhich is evaluated to yield a COM interface pointer to query.
formO A form to be evaluated.

77

2 COM Reference Entries

punknown(J A symbol.

interface-name] A symbol which names the COM interface. It is not evaluated.
errorpd] A generalized boolean.

dispatchJ A symbol.

Values

value* The values returned by the last form.

Description

Themacrowi t h- query-i nt erface calsquery-interface tofind an interface pointer for interface-name from the
existing COM interface pointer interface-ptr. It evaluates each form with the variable punknown bound to the queried pointer
and the pointer is released when control |eaves the body (whether directly or due to anon-local exit).

If errorp istrue, then punknown is bound to ni | if the interface pointer cannot be found, otherwise an error of type
com error issignaled.

If dispatch is non-nil, then alocal macro named by dispatch is created asif by wi t h- com i nt er f ace to invoke COM
interface methods on punknown.

Examples

This example invokes the methodson ani - bar interface pointer queried from an existing interface pointer.

(wi th-query-interface (p-bar i-bar
:di spatch call -bar)
p-f oo
(call-bar bar-init)
(call-bar bar-print))

See also
query-interface

rel ease
with-tenp-interface

with-temp-interface Macro

Summary

Used to simplify reference counting for a COM interface pointer.

Package

com

Signature

with-tenp-interface (var) interface-ptr {form}* => value*

78

2 COM Reference Entries

Arguments

varJ A symbol.

interface-ptrJ A formwhichis evaluated to yield a COM interface pointer.
formO A form to be evaluated.

Values

value* The values returned by the last form.

Description

Themacrowi t h-t enp-i nt er f ace evaluates each form with the variable var bound to the value of interface-ptr. When
control leaves the body (whether directly or due to a non-local exit), r el ease is caled with thisinterface pointer.

Examples

This example invokes the COM method Get Docunent at i on intheinterface | Typel nf o on an interface pointer which
must be released after use.

(defun get-tinfo-nenber-docunentation (disp tinfo
menber -i d)
(with-temp-interface (typeinfo)
(get-type-info disp tinfo)
(call-cominterface (typeinfo i-type-info
get - docunent at i on)
menber-id)))

See also

rel ease
W t h-query-interface

79

3 Using Automation

3.1 Including Automation in a Lisp application

This section describes how to load Automation and generate any FL I definitions needed to use it.

3.1.1 Loading the modules

Before using any of the LispWorks Automation APIs, you need to load the module using:

(require "automation")

3.1.2 Generating FLI definitions from COM definitions

Automation components and interfaces that are to be used by the Automation APl must be placed in atype library using
suitable tools. In some cases, this type library will be supplied as part of the DLL or executable containing the component.

Some of the Automation APIs described in this chapter require you to convert the definitions in the type library into FLI
definitions. Thisisdone by compiling and loading a system definition that references the library with the options: t ype
:mdl-type-library-file. Thenamesinthetypelibrary are converted to Lisp symbols as specified in 1.3 The
mapping from COM namesto Lisp symbals.

Note: thisisnot required by all the APIs, for example see 3.3.2 Calling Automation methods without a typelibrary and
3.4.2 A simpleimplementation of a single Automation interface.

3.1.3 Reducing the size of the converted library

Suppose you have adef syst emsystem definition form that references alibrary: that is, a system member has options
ctype:midl-type-library-file asdescribedin3.1.2 Generating FLI definitionsfrom COM definitions.

For this member, the option : comcan be added to specify whether all the COM functionality is required. The keyword can
take these values:

t Analyze and generate all the required code for calling and implementing the interfaces from the
type library. Thisisthe default value.

ni | Analyze but do not generate any code for calling or implementing COM interfaces from the type
library. Itisstill possibleto call Automation methods.

: not - bi nary Analyze but do not generate any code for calling or implementing COM interfaces from the type
library. It isstill possibleto call Automation methods and implement dispinterfacesin the type
library, but not dual or COM interfaces.

Using thevalueni | or : not - bi nary generates much smaller code and is therefore much faster. However, it is never
obligatory to use the option : com

Use: com ni | when the application calls Automation interfaces from the type library but does not implement any of them or
need to call any methods from dual interfacesusing cal | - com i nt er f ace.

80

3 Using Automation

Use: com: not - bi nar y when the application implements only dispinterfaces from the library. Thisistypically required for
implementing sink interfaces for use with connection points.

3.2 Starting a remote Automation server

A remote Automation server is started from Lisp by using its coclass name, CLSID or ProglD. The macrowi t h- cocl ass
can be used to make an instance of an automation server from its coclass name for the duration of its body. The function
creat e- obj ect can be used to start an automation server given its CLSID or ProglD. The function
create-instance-w th-events can be used to start and automation server and set its event handler. The function

get - acti ve- obj ect can be used to look for aregistered running instance of a coclass in the system Running Object Table.

3.3 Calling Automation methods

Automation methods can be called either with or without a compiled type library. In both cases, arguments and return values
are converted according to the types specified by the method's definition.

3.3.1 Calling Automation methods using a type library

To use this approach, you must have the type library available at compile-time (see 3.1.2 Generating FL1 definitions from
COM déefinitions). Information from the type library is built into your application, which makes method calling more
efficient. However, it also makesit less dynamic, because the library at the time the application is run must match.

There are three kinds of Automation method, each of which is called using macros designed for the purpose.

» Ordinary methods are called using the macroscal | - di spat ch- net hod andwi t h- di spat ch-interface. If thereis
no Automation method with the given method name, then a property getter with the same nameiscalled if it exists,
otherwise an error issignaled. Theset f form of cal | - di spat ch- net hod can be used to call property setter methods.

 Property getter methods are called using the macro cal | - di spat ch- get - property.

» Property setter methods are called using the macroscal | - di spat ch- put - property ortheset f form of
cal | -di spat ch-get - property.

To use these macros, you need to specify the interface name, the method name, a COM interface pointer for thei - di spat ch
interface and suitable arguments. The interface and method names are given as symbols named asin 1.3 The mapping from
COM namesto Lisp symbols and the COM interface pointer isaforeign pointer of typecom i nt er f ace. Inall the
macros, the args and values are as specified in the 3.3.3 Data conver sion when calling Automation methods.

Thewi t h- di spat ch-i nt er f ace macro is useful when several methods are being called with the same COM interface
pointer, because it establishes alocal macro that takes just the method name and arguments.

3.3.2 Calling Automation methods without a type library

This approach is useful if the type library is not available at compile time or you want to allow methods to be called
dynamically without knowing the interface pointer type at compile-time. It can be less efficient than using the approach in
3.3.1 Calling Automation methods using atypelibrary, but is often the simplest approach, especialy if the Automation
component was written to be called from a language like Visual Basic.

There are three kinds of Automation method, each of which is called using functions designed for the purpose.

» Ordinary methods are called using the function i nvoke- di spat ch- net hod. If thereis no Automation method with the
given method name, then a property getter with the same nameis called if it exists, otherwise an error issignaled. The
set f formof i nvoke- di spat ch- net hod can be used to call property setter methods.

8l

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

3 Using Automation

» Property getter methods are called using the function i nvoke- di spat ch- get - property.

 Property setter methods are called either using the function i nvoke- di spat ch- put - property or theset f form of
i nvoke- di spat ch-get-property.

To use these functions, you need to specify a COM interface pointer for thei - di spat ch interface, the method name and
suitable arguments. The method name is given as a string or integer and the COM interface pointer is aforeign pointer of
typecom i nt er f ace. Inall the functions, the args and values are as specified in the 3.3.3 Data conver sion when calling
Automation methods.

3.3.3 Data conversion when calling Automation methods

The arguments and return values to Automation methods are restricted to a small number of simple types, which map to Lisp
types as follows:

Automation types, VT codes and their corresponding Lisp types

Automation type VT code Lisp type

null value VT_NULL the symbol : nul |

empty value VT_EMPTY the symbol : enpt y

SHORT VT |2 i nt eger

LONG VT |4 i nt eger

FLOAT VT_R4 si ngl e-fl oat

DOUBLE VT_R8 doubl e- f 1 oat

CcY VT_CY not supported

DATE VT_DATE not supported

BSTR VT_BSTR string

| Di spat ch* VT_DI SPATCH FLI (: pointer i-dispatch)
SCODE VT_ERROR i nt eger

VARI ANT_BOOL VT_BOOL nil ort

VARI ANT* VT_VARI ANT recursively convert

I Unknown* VT_UNKNOWN FLI (: pointer i-unknown)
DECI MAL VT_DECI MAL not supported

BYTE VT_U 1 i nt eger

SAFEARRAY VT_ARRAY array

dynamic dynamic li sp-variant

When an Automation argument isal i sp- vari ant object, itstypeisused to set the VT code. See make- i sp-vari ant
andset - vari ant .

In and in-out parameters are passed as positional argumentsin the calling forms and out and in-out parameters are returned as
additional values. If there is an argument with ther et val attribute theniit is returned as the first value.

Optional parameters can be passed as: not - speci fi ed if they are not needed. Alternatively, they can be omitted if all
remaining optional arguments are also omitted.

If thereis a parameter marked with the var ar g attribute then any arguments after the last optional argument will be collected

82

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm

3 Using Automation

into an array and passed as the value of that parameter.

3.3.4 Using collections

Themacrodo- col | ecti on-it ens can be used to iterate over the items or an interface that implements the Collection
protocol. If the collection items are interface pointers, they must be released when not needed.

For example, to iterate over the Tabl e objects from the Tabl es collection of a MyDocunent interface pointer:

(with-temp-interface (tables)
(cal | -di spat ch-get-property
(doc ny-docunent tables))
(do-collection-itens (table tables)
(i nspect-the-table table)
(release table)))

3.3.5 Using connection points

Event sink interfaces can be connected and disconnected using the functionsi nt er f ace- connect and
i nterface-disconnect.

For example, the following macro connects a sink interface pointer event-handler to asource of i - cl onabl e-event s
events clonable for the duration of its body.

(def macro handl i ng-cl onabl e-events ((cl onabl e event-handl er)
&body body)
(1w wi t h-uni que- names (cooki e)
(1w rebinding (cl onabl e event-handl er)
“(let ((,cookie nil))
(unwi nd- pr ot ect
(progn
(setq , cookie
(interface-connect ,clonable
"i-clonabl e-events
,event - handl er))
, @ody)
(when , cooki e
(i nterface-disconnect ,clonable
"i-clonabl e-events

,cookie)))))))

3.3.6 Error handling

When an Automation server returns an error code, the calling macros such ascal | - di spat ch- et hod signal an error of
typecom error . Theerror message will contain the source and description fields from the error.

For example, if pp isadispatch pointer toi -t est - sui t e- 1:

CL- USER 184 > (cal | -di spat ch- et hod
(pp nil i-test-suite-1 fx))
"in fx" ;; 1 nplenmentation running
Error: COM I Dispatch::Ilnvoke Exception Cccurred (0 "fx") : foo
1 (abort) Return to level 0O
2 Return to top loop level O.

Type :b for backtrace, :c <option nunber> to proceed, or :? for other options

83

3 Using Automation

3.4 Implementing Automation interfaces in Lisp

This section describes two techniques for implementing Automation interfacesin Lisp. The choice of technique usually
depends on whether you are implementing a complete server or asimple event sink. The section then describes other kinds of
interfaces that can be implemented and how to report errorsto the caller of a method.

3.4.1 A complete implementation of an Automation server

In the case where you are designing an set of COM interfaces and implementing a server to support them, you need to make a
complete implementation in Lisp. This allows several Automation interfaces to be implemented by a single class and also
supports dual interfaces.

The implementation defines an appropriate class, inheriting from the class st andar d- i - di spat ch to obtain an
implementation of the COM interfacei - di spat ch. Thisimplementation of i - di spat ch will automatically invoke the
appropriate COM method.

For dual interfaces, the methods should be defined in the same way as described for COM interfacesin 1.9 Implementing
COM interfacesin Lisp.

For dispinterfaces, the methods should be implemented using the macro def i ne- di spi nt er f ace- net hod or by a
specialized method of the generic function com obj ect - di spi nt er f ace-i nvoke.

To implement an Automation interfacein Lisp with st andar d- i - di spat ch, you need the following:

1. A typelibrary for the component, converted to Lisp as specified in 3.1 Including Automation in a Lisp application.

2. A COM object class defined with def i ne- aut onat i on- conponent or def i ne- aut onati on-col | ecti on,
specifying the coclass or interface(s) to implement.

3. Implementations of the methods using def i ne- com et hod, def i ne- di spi nt erface-nethod or
com obj ect -di spi nterface-i nvoke.

4. For an out-of-process Automation component, either use aut onat i on- ser ver - mai n or have registration code which
callsregi st er-server andunr egi st er - server, typicaly after checking the result of
aut omat i on- server - command- | i ne- acti on or explicitly checking the command line for arguments/ RegSer ver
and/ UnRegSer ver.

5. Initialization code which either calls aut omat i on- server -t op-| oop or aut onat i on- server - mai n, or cals
co-initializeandstart-factories inathread that will be processing Windows messages (for instance a CAPI
thread).

3.4.2 A simple implementation of a single Automation interface

In the case where you are implementing a single dispinterface that was designed by someone €else, for example an event sink,
you can usually avoid needing to parse atype library or define a class to implement the interface.

Instead, you implement a dispinterface using the classsi npl e-i - di spat ch by doing the following:

1. Obtain an interface pointer that will provide type information for the component, to be used as the related-dispatch
argument in the call to the function quer y- si npl e-i - di spat ch-i nt er f ace. Inthe case where you are
implementing an event sink, the source interface pointer will usually do this.

2. Optionally, define a classwith def cl ass inheriting from si npl e-i - di spat ch. Theclasssi npl e-i - di spat ch can
be used itself if no special callback object is required.

3. Implement an invoke-callback that selects and implements the methods of the interface.

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

3 Using Automation

4. Defineinitialization code which callsco-i ni ti al i ze, obtainsthe related-dispatch from step 1, makes an instance of
the COM object class defined in step 2 with the invoke-callback from step 3, obtains its interface pointer by calling
query-si npl e-i -di spat ch-i nt er f ace (passing the related-dispatch) and attaches this interface pointer to the
appropriate sink in the related-dispatch (for example using connection point functions such asi nt er f ace- connect).
Thismust all be done in athread that will be processing Windows messages (for instance a CAPI thread).

3.4.3 Implementing collections

Interfaces that support the Collection protocol can be implemented using the macro def i ne- aut omat i on-col | ecti on.
This defines a subclass of st andar d- aut omat i on- col | ect i on, which implements the minimal set of collection methods
and calls Lisp functionsto provide the items. If the collection items are interface pointers, appropriate reference counting
must be observed.

See the exampl e files here:

(exanple-edit-file "com autonmation/collections/")

3.4.4 Implementing connection points

Lisp implementations can act as event sources via a built-in implementation of the | Connect i onPoi nt Cont ai ner
interface, which def i ne- aut omat i on- conponent providesif source interfaces are specified. A built-in implementation of
| Connect i onPoi nt handles connections for each interface and the macro do- connect i ons can be used to iterate over
the connections when firing the events.

3.4.5 Reporting errors

Classes defined using def i ne- aut omat i on- conponent allow extended error information to be returned for all
Automation methods. Within the body of adef i ne- com net hod definition, the function set - er r or - i nf o can be called
to describe the error. In addition, this function returns the value of DI SP_E_EXCEPTI ON, which can be returned directly as
the hr esul t from the method.

For example:

(define-comnethod (i-test-suite-1 fx)
((this c-test-suite-1))
(print "in fx")
(set-error-info :description "foo"
tiid '"i-test-suite-1
:source "fx"))

3.4.6 Registering a running object for use by other applications

If other applications need to be able to find one of your running objects from its coclass, then call
regi ster-active-obj ect toregister an interface pointer for the object in the system Running Object Table. Call
revoke- acti ve- obj ect toremove theregistration.

3.4.7 Automation of a CAPI application

For an example of how to implement an Automation server that controls a CAPI application, see thefile:

(exanpl e-edit-file "confaut onati on/ capi-application/build")

85

3 Using Automation

3.5 Examples of using Automation

Several complete examples are provided in the exanpl es subdirectory of your LispWorks library.

A simple Automation application:

(example-edit-file "com aut omati on/ capi-application/readne.txt")

(example-edit-file "com automation/cl-sntp/clsntp-inpl-build")
Controlling an Automation application:

(example-edit-file "com aut omati on/ capi-application/readne.txt")

(exanple-edit-file "conmfautonmation/cl-sntp/clsntp-test")

Getting events from COM interfaces:

(exanmple-edit-file "conm automati on/ events/ie-events")

(exanpl e-edit-file "conf aut omati on/ capi-application/readne.txt")

86

4 Automation Reference Entries

This chapter documents Automation functionality.

call-dispatch-get-property Macro

Summary

Calls an Automation property getter method from a particular interface.

Package

com

Signature

cal | -di spatch-get-property spec {arg}* => value*

spec :: = (dispinterface-ptr dispinterface-name method-name)

Arguments

spec The interface pointer and a specification of the method to be called.

argd] Arguments to the method (see 3.3.3 Data conver sion when calling Automation methods
for details).

dispinterface-ptr A form which isevaluated to yield aCOM i - di spat ch interface pointer.

dispinterface-namel] A symbol which names the Automation interface. It is not evaluated.

method-namel] A symbol which names the property getter method. It is not evaluated.

Values

value* Values from the method (see 3.3.3 Data conver sion when calling Automation methods
for details).

Description

Themacro cal | - di spat ch- get - property isused to invoke an Automation property getter method from Lisp.
dispinterface-ptr should be a COM interface pointer for thei - di spat ch interface.

The appropriate Automation property getter method, chosen using dispinterface-name and method-name, is invoked after
evaluating each arg, which must be values that are suitable for the method and of types compatible with Automation.

The values returned are as specified by the method signature. In general, property getter methods take no arguments and
return the value of the property, but see 3.3.3 Data conver sion when calling Automation methods for more details.

Thereisalsoset f expander for cal | - di spat ch- get - pr operty, which can be used as an aternative to the
cal | - di spat ch- put - property macro.

87

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

4 Automation Reference Entries

Examples

For example, in order to get and set the W dt h property of aMyDocunent interface pointer:

(cal | -di spatch-get-property
(doc ny-docunent wi dth))

(setf (call-dispatch-get-property
(doc ny-docunent width))
10)

See also

cal |l -di spat ch- put - property
cal | - di spat ch- net hod

call-dispatch-method Macro

Summary

Calls an Automation method from a particular interface.

Package

com

Signature

cal | -di spat ch-net hod spec {arg}* => value*

spec :: = (dispinterface-ptr dispinterface-name method-name)

Arguments

spec The interface pointer and a specification of the method to be called.

argl] Arguments to the method (see 3.3.3 Data conver sion when calling Automation methods
for details).

dispinterface-ptr] A form which is evaluated to yield aCOM i - di spat ch interface pointer.

dispinterface-namel] A symbol which names the Automation interface. It is not evaluated.

method-name’] A symbol which names the method. It is not evaluated.

Values

value* Values from the method (see 3.3.3 Data conver sion when calling Automation methods
for details).

Description

Themacro cal | - di spat ch- met hod is used to invoke an Automation method from Lisp.

dispinterface-ptr should be a COM interface pointer for thei - di spat ch interface.

88

4 Automation Reference Entries

The appropriate Automation method, chosen using dispinterface-name and method-name, is invoked after evaluating each
arg, which must be values that are suitable for the method and of types compatible with Automation.

The values returned are as specified by the method signature. See 3.3.3 Data conver sion when calling Automation methods

for more details.

If there is no Automation method with the given method-name, then a property getter with the same nameiscalled if it exists,
otherwise an error is signaled.

Theset f formof cal | - di spat ch- met hod can be used to call property setter methods.

Examples

For example, in order to invoke the ReFor mat method of a MyDocunent interface pointer:

(cal | -di spat ch-net hod (doc ny-docunent re-fornat))

See also

wi t h-di spatch-interface

call -di spat ch-get -property

cal |l -di spat ch- put - property

call-dispatch-put-property

Summary

Calls an Automation property setter method from a particular interface.

Package

com

Signature

cal | -di spat ch-put - property spec {arg}* => value*

spec :: = (dispinterface-ptr dispinterface-name method-name)
Arguments
spec The interface pointer and a specification of the method to be called.

argQ]

dispinterface-ptr
dispinterface-namel]
method-namel]

Values

value*

Arguments to the method (see 3.3.3 Data conver sion when calling Automation methods
for details).

A form which is evaluated to yield aCOM i - di spat ch interface pointer.

A symbol which names the Automation interface. It is not evaluated.

A symbol which names the property getter method. It is not evaluated.

Values from the method (see 3.3.3 Data conver sion when calling Automation methods
for details).

89

Macro

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

4 Automation Reference Entries

Description
Themacro cal | - di spat ch- put - property isused to invoke an Automation property setter method from Lisp.
dispinterface-ptr should be a COM interface pointer for thei - di spat ch interface.

The appropriate Automation property setter method, chosen using dispinterface-name and method-name, isinvoked after
evaluating each arg, which must be values that are suitable for the method and of types compatible with Automation.

The values returned are as specified by the method signature.

In general, property setter methods take one argument (the new value) and return the no values, but see 3.3.3 Data
conver sion when calling Automation methods for more details.

Thereisalsoset f expander for cal | - di spat ch- get - pr oper t y, which can be used as an alternative to the
cal | - di spat ch- put - property macro.

Examples

For example, in order to set the W dt h property of a MyDocunent interface pointer:

(cal | -di spat ch- put - property
(doc ny-docunent wi dth)
10)

See also

cal | -di spatch-get - property
cal | - di spat ch- net hod

com-dispatch-invoke-exception-error Condition Class

Summary

The condition class used to signal Automation exceptions.

Package

com

Superclasses

comerror

Description

The condition classcom di spat ch-i nvoke- excepti on-error isused by the LispWorks COM APl when Automation
signals an exception (DI SP_E_EXCEPTI ON).

See also

com di spat ch-i nvoke-exception-error-info

90

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

4 Automation Reference Entries

com-dispatch-invoke-exception-error-info Function

Summary

Retrievesinformation stored in acom di spat ch-i nvoke- exception-error.

Package

com

Signature

com di spat ch-i nvoke- exception-error-info condition fields => field-values

Arguments

conditiond A com di spat ch-i nvoke- exception-error.
fieldsO A list of keywords as specified below.

Values

field-valuesl] A list.

Description

The function com di spat ch-i nvoke- excepti on-error-i nf o retrievesinformation about the exception from condition.
The keywords in fields are used to select which information is returned in field-values, which isalist of values
corresponding to each keyword in fields.

The following keyword are supported in fields:

: code The error code.

:source The source of the error.
:description The description of the error.
thelp-file The help file for the error.

: hel p- cont ext The help context for the error.
Examples

(handl er-case
(com i nvoke-di spat ch- net hod counter "Run")
(com com di spat ch-i nvoke-exception-error (condition)
(destructuring-bind (code description)
(com com di spat ch-i nvoke-exception-error-info
condi tion
'(:code :description))
(format *error-output*
"Run failed with code ~D, description ~S."
code
description))))

91

4 Automation Reference Entries

See also

com di spat ch-i nvoke- excepti on-error

com-object-dispinterface-invoke Generic Function

Summary

A generic function called by | Di spat ch: : | nvoke when there is no defined dispinterface method.

Package

com

Signature

com obj ect - di spi nterface-i nvoke com-object method-name method-type args => value

Arguments

com-objectl] A COM object whose method is being invoked.
method-name] A string naming the method to be called.
method-typel] A keyword specifying the type of method being called.
argss] A vector containing the arguments to the method.
Values

valuell A value suitable for return from a COM method.
Description

The generic function com obj ect - di spi nt er f ace-i nvoke iscaled by I Di spat ch: : | nvoke when thereis no method
defined using def i ne- di spi nt er f ace- net hod.

Methods can be written for com obj ect - di spi nt er f ace- i nvoke, specializing on an Automation implementation class
and implementing the method dispatch based on method-name and method-type.

method-name is a string specifying the name of the method as given by the method declaration in the IDL or type library.

method-type, has one of the following values:

: get when invoking a property getter method.
: put when invoking a property setter method.
: met hod when invoking a normal method.

The arguments to the method are contained in the vector args, in the order specified by the method declaration in the type
library. For in and in-out arguments, the corresponding element of args contains the argument value converted to the type
specified by the method declaration and then converted to Lisp objects as specified in 3.3.3 Data conver sion when calling
Automation methods. For out and in-out arguments, the corresponding element of args should be set by the method to
contain the value to be returned to the caller and will be converted to an automation value as specified in 3.3.3 Data
conver sion when calling Automation methods.

92

4 Automation Reference Entries

value should be a value which can be converted to the appropriate return type as the primary value of the method and will be
converted to an automation value as specified in 3.3.3 Data conver sion when calling Automation methods. It isignored for

methods that are declared as returning void.

Notes

When using com obj ect - di spi nt er f ace-i nvoke, itisnot possible to distinguish between invocations of the same
method name for different interfaces when com-object implements several interfaces. If thisis required, then the method

must be defined with def i ne- di spi nt er f ace- net hod.

Examples

(def met hod com com obj ect -di spi nterface-i nvoke ((this my-di spinterface)
nmet hod- nane
nmet hod-t ype
ar gs)

(cond ((equal nethod-nanme "M/Property")
(case nethod-type
(:get
(slot-value this 'my-property))
(: put
(setf (slot-value this 'ny-property)
(svref args 0)))))
((equal nethod-nane "M/Met hod")
(format t "MyMet hod was cal | ed~%))
(t (call-next-nethod))))

See also

define-di spi nterface-nethod

create-instance-with-events

Summary

A convenience function which combinescr eat e- i nst ance andset -i - di spat ch- event - handl er.

Package

com

Signature

create-instance-w th-events clsid event-handler &rest args &ey event-object => interface,

Arguments

clsidd A string or ar ef gui d giving a CLSID to create.
event-handlerd A function of four arguments.

argsl] Lisp objects.

event-object[] A Lisp object.

93

Function

4 Automation Reference Entries

Values

interfacel Ani - di spat ch interface.

sinks[] A list of objects representing the connections made.
Description

Thefunction cr eat e-i nst ance- wi t h- event s isaconvenience function which startsani - di spat ch interface and sets
an event handler.

It first callscr eat e- i nst ance with clsid and al the keyword argumentsin args except : event - obj ect . clsid defaultsthe
creat e-i nst ance argument riid to the valuei - di spat ch.

It then callsset - i - di spat ch- event - handl er on the resulting interface, passing event-handler, event-object and clsid (as
the coclass).

interface isthe interface started, and sinksisthe result of set - i - di spat ch- event - handl er.

Examples

(exanmple-edit-file "conf automati on/ events/ie-events")

See also

create-instance
set-i-di spatch-event-handl er

create-object Function

Summary

Create an instance of a coclass.

Package

com

Signature

creat e-obj ect &key clsid progid clsctx => interface-ptr

Arguments

clsidd A string giving a CLSID to create.

progidd] A string giving a Progl D to create.

clsctxd A CLSCTX value, which defaults to CLSCTX_SERVER.
Values

interface-ptr Ani - di spat ch interface pointer.

94

4 Automation Reference Entries

Description

The function cr eat e- obj ect creates an instance of a coclass and returnsitsi - di spat ch interface pointer. The coclass
can be specified directly by supplying clsid or indirectly by supplying progid, which will locate the CLSID from the registry.

clsctx indicate the execution contexts in which an object isto be run. It defaultsto CLSCTX_SERVER.

Notes

You must initialize the COM runtime before calling cr eat e- obj ect (see 1.4 Initializing the COM runtime).

Examples

The following are equivalent ways of creating an Microsoft Word application object:

(create-object :progid "Word. Application.8")

(create-object
:clsid "000209FF- 0000- 0000- CO00- 000000000046")

See also

wi t h-cocl ass

define-automation-collection Macro

Summary

Defines an implementation class for an Automation component that supports the Collection protocol.

Package

com

Signature

defi ne-aut omati on-col | ection classname ({ superclass-name}*) ({ dot-specifier}*) {class-option}*

Arguments

class-namel] A symbol naming the class to define.
superclass-namel] A symbol naming a superclass to inherit from.
slot-specifier A dlot description as used by def cl ass.
class-option[] An option asused by def cl ass.
Description

The macro def i ne- aut onat i on- col | ecti on definesast andar d- cl ass named by class-name which is used to
implement an Automation component that supports the Collection protocol. Normal def cl ass inheritance rules apply for
slots and Lisp methods.

95

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

4 Automation Reference Entries

Each superclass-name argument specifies a direct superclass of the new class, which can be any st andar d- cl ass provided
that st andar d- aut omat i on- col | ecti on isincluded somewherein the overall class precedence list. This standard class
provides aframework for the collection class.

slot-specifiers are standard def cl ass slot definitions.
class-options are standard def cl ass options. In addition the following options are recognized:
(:interface interface-name)

Thisoption is required. The component will implement the interface-name, which must be an
Automation Collection interface, containing (at least) the standard properties Count and
_NewEnum The macro will define an implementation of these methods using information from
the instance of the class to count and iterate.

(:item nethod itemmethod-name*)

When specified, a COM method named item-method-name will be defined that will look up
itemsusing thei t em | ookup- f unct i on from the instance.

If not specified, the method will becalled I t em For Collections which do not have an item
method, passni | astheitem-method-name.

Examples

See also

defi ne- aut omati on- conponent
st andar d- aut omati on-col | ecti on

define-automation-component Macro

Summary

Define an implementation class for a particular Automation component.

Package

com

Signature

def i ne- aut omati on- conponent class-name ({ superclass-name}*) ({ dot-specifier}*) {class-option}*

Arguments

class-namel] A symbol naming the class to define.
superclass-namel] A symbol naming a superclass to inherit from.
slot-specifier] A slot description as used by def cl ass.
class-option[] An option as used by def cl ass.

96

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

4 Automation Reference Entries

Description

The macro def i ne- aut onat i on- conponent definesast andar d- cl ass which is used to implement an Automation
component. Normal def cl ass inheritance rules apply for slots and Lisp methods.

Each superclass-name argument specifies a direct superclass of the new class, which can be any st andar d- cl ass provided
that certain standard classes are included somewhere in the overall class precedence list. These standard classes depend on
the other options and provide the default superclass list if noneis specified. The following standard classes are available;

» standar d-i - di spat ch isaways heeded and provides a complete implementation of thei - di spat ch interface,
based on the type information in the type library.

e standard-i-connecti on- poi nt - cont ai ner isneeded if there are any source interfaces specified (viathe
:cocl ass or: source-interfaces options). This provides a complete implementation of the Connection Point
protocoals.

slot-specifiers are standard def cl ass slot definitions.
class-options are standard def cl ass options. In addition the following options are recognized:
(: cocl ass coclass-name)

coclass-name is a symbol specifying the name of a coclass. If thisoption is specified then a class
factory will be registered for this coclass, to create an instance of class-name when another
application requiresit. The component will implement the interfaces specified in the coclass
definition and the default interface will be returned by the class factory.

Exactly oneof : cocl ass and: i nt er f aces must be specified.

(: i nt er f aces interface-name*)

Each interface-name specifies an Automation interface that the object will implement. The

i -unknown andi - di spat ch interfaces should not be specified because their implementations
are automatically inherited from st andar d- i - di spat ch. No class factory will be registered
for class-name, so the only way to make instances is from with Lisp by calling make- i nst ance.

Exactly oneof : cocl ass and: i nt er f aces must be specified.

(: sour ce-i nt er f aces interface-name*)

Each interface-name specifies a source interface on which the object allows connections to be
made. If the: cocl ass option is aso specified, then the interfaces flagged with the sour ce
attribute are used as the default for the: sour ce-i nt er f aces option.

When there are event interfaces, the component automatically implements the

I Connect i onPoi nt Cont ai ner interface. The supporting interfaces

| EnunConnect i onPoi nt's, | Connect i onPoi nt and | EnunConnect i ons are also provided
automatically.

(: extra-interfaces interface-name*)

Each interface-name specifiesa COM interface that the object will implement, in addition to the
interfacesimplied by the: cocl ass option. This allows the object to implement other interfaces
not mentioned in the type library.

(: cocl ass-reusabl e- p reusable)

97

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

4 Automation Reference Entries

If reusable istrue (the default), then the server running the component can receive requests from
more than one application. If reusableisni | , then the server will receive requests only from the

application that started it and the Operating System will start a new instance of the server if

required. For more details, see REGCLS_MULTI PLEUSE and REGCLS_SI NGLEUSE in MSDN.

(:type-library typelibrary-name)

type-library-name is a symbol specifying the name of atype library, mapped from the name
given by the"library" statement in the IDL. If thisoption is specified then an error is signaled if
the namesused inthe: cocl ass, : i nterfaces or: source-interfaces classoptionsare

not defined by type-library-name.

Usedefi ne- com net hod, defi ne-di spi nt erface- met hod or com obj ect - di spi nterface-i nvoke to define

methods in the interfaces implemented by the component. See also 1.9.4 Unimplemented methods.

Examples

(define-automati on-conponent c-test-suite-1 ()

((prop3 :initformnil)

(interface-4-called :initformnil))

(:cocl ass test-suite-conponent)

)

See also

defi ne- com net hod

defi ne-di spi nterface-nethod

com obj ect -di spi nterface-i nvoke
standard-i - di spatch

standard-i - connecti on- poi nt - cont ai ner

defi ne-aut omati on-col | ecti on

define-dispinterface-method

Summary

Defines a dispinterface method.

Package

com

Signature

define-di spi nterface-nethod method-spec (class-spec .

method-spec : : = method-name | (interface-name method-name)
class-spec :: = (this class-name)
Arguments

method-specl] Specifies the method to be defined.

lambda-list) {form}* => value

Macro

4 Automation Reference Entries

class-spec Specifies the implementation class and variables bound to the object with in forms.

lambda-list[] A simplelambdalist. That is, alist of parameter names.

formO Forms which implement the method. The value of the final form is returned as the result
of the method.

method-name] A symbol naming the method to define.

interface-name] A symbol naming the interface of the method to define. Thisisonly required if the
implementation class class-name has more than one method with the given method-name.

thisd A symbol which will be bound to the COM object whose method is being invoked.

class-namel] A symbol naming the COM implementation class for which this method is defined.

Values

valuell The value to be returned to the caller.

Description

The macro def i ne- di spi nt er f ace- net hod defines a dispinterface method that implements the method method-name for
the Automation implementation class class-name. The extended method-spec syntax containing interface-name isrequired if
class-name implements more than one interface with a method called method-name (analogous to the C++ syntax

I nt er f aceNane: : Met hodNane).

When the method is called, each formis evaluated in alexical environment containing the following bindings.
The symbol thisis bound to the instance of the Automation implementation class on which the method is being invoked.

The number of parameter in lambda-list must match the declaration in the type library. Each in and in-out parameter is bound
tothevalue passed to | Di spat ch: : | nvoke, converted to the type specified by the method declaration and then converted
to Lisp objects as specified in 3.3.3 Data conver sion when calling Automation methods. For missing values the value of
the parameter is: not - f ound. For a parameter marked with the var ar g attribute, the value will be an array of the values
passed in the call. For out and in-out arguments, the corresponding parameter should be set by the forms to contain the value
to be returned to the caller and will be converted to an automation value as specified in 3.3.3 Data conver sion when calling
Automation methods.

value should be a value which can be converted to the appropriate return type as the primary value of the method and will be
converted to an automation value as specified in 3.3.3 Data conver sion when calling Automation methods. It isignored for
methods that are declared as returning void.

Notes

Thedef i ne- com net hod macro should be used to implement methods in dual interfaces.

See also

defi ne- com et hod
com obj ect - di spi nterface-i nvoke

99

4 Automation Reference Entries

disconnect-standard-sink Function

Summary

Releases a standard sink object, stopping the events.

Package

com

Signature

di sconnect - st andar d- si nk sink => result

Arguments

sinkd A standard sink object.
Values

result] tornil.
Description

The function di sconnect - st andar d- si nk releases a standard sink object. Thisis one of the objectsin thelist returned by
set - i - di spat ch- event - handl er which represents a connection it made.

di sconnect - st andar d- si nk stopsthe events that pass through sink.

resultist if the sink was released.

See also

create-instance-w th-events
set-i-di spatch-event-handl er

do-collection-items Macro

Summary

Iterates over the items of an Automation Collection.

Package

com

Signature

do-col l ection-itenms (item collection) form*

100

4 Automation Reference Entries

Arguments

item] A symbol bound to each item in the collectionin turn.

collectiond A formwhichis evaluated to yield aCOM i - di spat ch interface pointer that implements
the collection protocol.

form] A form to be evaluated.

Description

Themacrodo-col | ecti on-it ens executes each formin turn, with item bound to each item of collection.

Note that for collections whose items are interface pointers, forms must arrange for each pointer to be released when no
longer needed.

collection should be a COM interface pointer for ani - di spat ch interface that implements the Collection protocol. The
items are converted to Lisp as specified in 3.3.3 Data conver sion when calling Automation methods.

Examples

For example, to iterate over the Tabl e objects from the Tabl es collection of a MyDocunent interface pointer:

(with-tenp-interface (tables)
(cal | -di spatch-get-property
(doc ny-docunent tables))
(do-collection-itens (table tables)
(i nspect-the-table table)
(release table)))

See also

cal | -di spat ch- net hod

do-connections Macro

Summary

Iterates over the sinks for a given Automation component object.

Package

com

Signature

do- connecti ons ((sink interface-name &key dispatch automation-dispatch) container) {form}*

Arguments

sinkd A symbol which will be bound to each sink interface pointer.

interface-namel] A symbol naming the sink interface.

dispatch] A symbol which will be bound to alocal macro that invokes a method from the sink

interface asif by wi t h-comi nterface.

101

4 Automation Reference Entries

automation-dispatchC] A symbol which will be bound to alocal macro that invokes a method from the sink
interface asif by wi t h- di spat ch-i nterface.

containerd An instance of a component class that has interface-name as one of its source interfaces.
formO A form to be evaluated.
Description

The macro do- connect i ons provides away to iterate over all the sink interface pointers for the source interface interface-
name in the connection point container container.

container must be asubclass of st andar d-i - connecti on- poi nt - cont ai ner.

Each formis evaluated in turn with sink bound to each interface pointer.

If dispatch is given, it is defined as alocal macro invoking the COM interface interface-name as if by
with-cominterface.

If automation-dispatch is given, it is defined as alocal macro invoking the Automation interface interface-name asif by
wi t h-di spatch-interface.

Within the scope of do- connect i ons you can call thelocal function di scar d- connect i on which discards the connection
currently bound to sink. Thisis useful when an error is detected on that connection, for example when the client has
terminated. The signature of thislocal function is:

di scard- connecti on &ey release
release is a boolean defaulting to false. If releaseistruethenr el ease iscalled on sink.

Examples

Suppose thereisasourceinterfacei - cl onabl e- event s with amethod on- ¢l oned. The following function can be used to
invoke this method on all the sinks of an instance of acl onabl e- conponent class;

(defun fire-on-cloned (cl onabl e-conmponent)
(do-connections ((sink i-clonable-events
. di spatch cal |l -cl onabl e)
cl onabl e- conponent)
(call -cl onabl e on-cl oned val ue)))

See also
wi t h-di spatch-interface

with-cominterface
st andar d-i - connecti on- poi nt - cont ai ner

find-component-tlb Function

Summary

Returns the path of the type library associated with a component name.

102

4 Automation Reference Entries

Package

com

Signature

find-conmponent-tl b name &key version min-version max-version => path

Arguments

namel] A string.
version] A stringorni | .
min-version A string or ni | .
max-versiond A string or ni | .
Values

path A stringorni | .
Description

Thefunction f i nd- corrponent - t | b returns the path of the type library associated with the component name.

name should be the name of a component (either a ProglD or a GUID).

If versionissupplied, fi nd- conponent -t | b finds only this version of the type library.

If min-version or max-version, or both of these, are supplied, they restrict which version of the type library can be found.

Each of version, min-version and max-version, if supplied, should be a string. The string should contain either one
hexadecimal number or two hexadecimal numbers separated by adot. The first number is the mgjor version, the second isthe
minor version, which defaultsto O.

If version is not supplied, then fi nd- conponent -t | b preferentially finds the the library version specified in the registry for
the component (if any) if it fits the specification by max-version and/or min-version, otherwise it finds the earliest version in
the range specified by min-version and max-version.

find- component -t 1 b returnsni | if it failsto find the type library within the specified version constraints.

See also

:mdl-type-library-file

find-component-value Function

Summary

Searches the registry for values associated with a component.

Package

com

103

4 Automation Reference Entries

Signature

fi nd- conponent - val ue name key-name => result, root

Arguments

namel] A String.

key-namel] A string or akeyword.
Values

resultd] A Lisp abject.

root[] A keyword.
Description

Thefunction f i nd- comrponent - val ue searches the Windows registry for values associated with a component.
name should be the name of a component (either a ProgID or a GUID).

key-name should name aregistry key. If it isastring, it should match the key name in the registry. Otherwise key-name can
be one of the following keywords:

clibrary Returns the library that implements the component (if any).
cinproc-server32 Asfor:library.

:l ocal -server 32 Returns the executable that implements the component (if any).
:version Returns the version.

:prog-id Returns the ProgID.

:version-i ndependent - prog-id
Returns the version-independent Progld.
itype-lib Returns the GUID of the type library.

fi nd- conponent - val ue returns the value result associated with the given key-name in the registry for component name. If
avaueisfound., then thereis a second returned value root which is either : | ocal - machi ne or : user, indicating the
branch of the registry in which the value was found.

fi nd- conponent - val ue simply returnsni | if it fails to find the information.

When running on 64-bit Windows, 32-bit LispWorks looks in the 32-bit registry view and 64-bit LispWorks looks in the 64-
bit registry view. LispWorks does not change the registry reflection settings.

Examples

(com find-component -val ue "shel | . expl orer" :version)

104

4 Automation Reference Entries

get-active-object

Summary

Looks for aregistered running instance of a coclass.

Package

com

Signature

get -acti ve-obj ect &key clsid progid riid errorp => interface-ptr

Arguments

clsiddd
progidd]
riid0]
errorpl]
Values

interface-ptr

Description

A string or ar ef gui d giving aCLSID to create.
A string giving a ProgI D to create.

An optional r ef i i d giving the COM interface name to return.

A boolean. Thedefaultist .

A COM interface pointer for riid.

Function

The function get - act i ve- obj ect looksfor aregistered running instance of a coclass in the system Running Object Table
and returnsitsriid interface pointer if any. If riidisni | , theni - unknown is used.

The coclass can be specified directly by supplying clsid or indirectly by supplying progid, which will locate the CLSID from

the registry.

If errorp istrue, then an error is signaled if no instances are running. Otherwise ni | isreturned if no instances are running.

Examples

(get-active-object :progid "Excel.Application”

See also

get - obj ect

criid "i-dispatch)

105

4 Automation Reference Entries

get-error-info Function

Summary

Retrieves the error information for the current Automation method.

Package

com

Signature

get-error-info &ey erorp fields => field-value*

Arguments

errorp[] A boolean.

fields] A list of keywords specifying the error information fields to return.
Values

field-value* Values corresponding to fields.

Description

Thefunction get - er r or - i nf o alows the various components of the error information to be retrieved for the last
Automation method called. fields should be alist of the following keywords, to specify which fields of the error information
should be returned:

iid At ef gui d object.

:source A string specifying the ProgID.

: description A string describing the error.
thelp-file A string giving the help fil€'s path.

: hel p- cont ext An integer giving the help context id.

A field-value will be returned for each field specified. The field-value will beni | if thefield is does not have avalue.

If errorp istrue and an error occurs while retrieving the error information, then an error of typecom er r or issignaled.
Otherwise ni | isreturned.

Examples

(rmul tipl e-val ue-bind (source description)
(get-error-info :fields '(:source :description))
(error "Failed with '~A" in ~A" description source))

See also

set-error-info

106

4 Automation Reference Entries

cal | - di spat ch- net hod
com error

get-i-dispatch-name Function

Summary

Returns the foreign name of anii - di spat ch interface.

Package

com

Signature

get -i - di spat ch- nane i-dispatch => name

Arguments

i-dispatchl] Ani - di spat ch interface.
Values

name A string.

Description

The function get - i - di spat ch- nane returns the foreign name of i-dispatch. That is, it obtains the first return value of
| Typel nf o: : Get Docunent ati on.

Examples

To implement code like this:

I f TypeOF obj Map. Sel ection |I's Pushpin Then

you would need something like:

(if (equalp (comget-i-dispatch-nane sel ection)
"PushPi n")
»)

See also

print-i-dispatch-nmethods

i -di spatch

creat e- obj ect

create-instance-w th-events

3.2 Starting a remote Automation server

107

4 Automation Reference Entries

get-i-dispatch-source-names Function

Summary

Returns the source names associated with anii - di spat ch interface.

Package

com

Signature

get -i - di spat ch-sour ce- nanes i-dispatch &ey all coclass => source-names

Arguments

i-dispatchC] Ani - di spat ch interface.

ald A generalized boolean, default value false.
coclass] The coclassto use, or ni | .

Values

source-names_] A list.

Description

The function get - i - di spat ch- sour ce- names returns the source names that are associated with thei - di spat ch
interface i-dispatch, which will beused by set - i - di spat ch- event - handl er.

coclass and all are as described for set -i - di spat ch-event - handl er.

Notes

If you need to call set - i - di spat ch- event - handl er repeatedly, then it is most efficient to call

get -i - di spat ch- sour ce- nanes once and pass the result source-namesto set - i - di spat ch- event - handl er. Thisis
becauseset - i - di spat ch- event - handl er itself callsget -i - di spat ch- sour ce- nanes if its source-names argument
isnil.

See also

set-i-di spatch-event-handl er

I-dispatch COM Interface Type

Summary

The Lisp namefor the | Di spat ch COM interface.

108

4 Automation Reference Entries

Package

com

Description

The COM interfacetypei - di spat ch isthe name given tothel Di spat ch COM interface within Lisp. The name results

from the standard mapping described in 1.3 The mapping from COM namesto Lisp symbols.

Examples

(query-interface ptr "i-dispatch)

See also

i -unknown
standard-i - di spatch

interface-connect

Summary

Connects asink interface pointer to the source of eventsin another COM interface pointer.

Package

com

Signature

i nterface-connect interface-ptr iid sink-ptr &ey errorp => cookie

Arguments

interface-ptr O] A COM interface pointer that provides the source interface iid.

iid0 Theiid of the source interface to be connected. Theiid can be a symbol naming the
interface or ar ef gui d foreign pointer.

sink-ptrJ A COM interface that will receive the eventsfor iid.

errorpl] A boolean.

Values

cookie An integer cookie associated with this connection.

Description

Function

Thefunctioni nt er f ace- connect connects the COM interface sink-ptr to the connection point in interface-ptr that is

named by iid.

If errorpisfalse, errors connecting sink-ptr will causeni | to be returned. Otherwise an error of type com er r or will be

signaled.

109

4 Automation Reference Entries

Examples

Suppose there is an interface pointer cl onabl e which provides a sourceinterfacei - cl onabl e- event s, then the following

form can be used to connect an implementation of this source interface si nk:

(setqg cookie
(i nterface-connect clonable
"i-clonabl e-events
si nk))

See also
i nt erface-di sconnect

refguid
com error

interface-disconnect

Summary

Disconnect a sink interface pointer from the source of eventsin another COM interface pointer.

Package

com

Signature

i nterface-di sconnect &key interface-ptr iid cookie &ey errorp => flag

Arguments

interface-ptr O] A COM interface pointer that provides the source interface iid.

iidO Theiid of the source interface to be disconnected. Theiid can be a symbol naming the
interface or ar ef gui d foreign pointer.

cookiel The integer cookie associated with the connection to be disconnected.

errorpC] A boolean.

Values

flag A boolean, true for successful disconnection.

Description

Function

Thefunctioni nt er f ace- di sconnect disconnects the connection cookie from the connection point in interface-ptr that

matchesiid.

If errorp isfalse, errors disconnecting cookie will causeni | to bereturned. Otherwise an error of type com er r or will be

signaled.

110

4 Automation Reference Entries

Examples

Suppose there is an interface pointer cl onabl e which provides a sourceinterfacei - cl onabl e- event s, then the following
form can be used to disconnect an implementation of this source interface with cookie cooki e:

(i nterface-di sconnect clonable
"i-cl onabl e-events
cooki e)

See also
i nt erface-connect

refguid
com error

invoke-dispatch-get-property Function

Summary

Call adispatch property getter method from an interface pointer.

Package

com

Signature

i nvoke- di spat ch-get - property dispinterface-ptr name & est args => value*

Arguments

dispinterface-ptr An Automation interface pointer.
name[] A string or integer.

argsd Arguments passed to the method.
Values

value* O Values returned by the method.
Description

Thefunctioni nvoke- di spat ch- get - pr oper ty isused to invoke an Automation property getter method from Lisp
without needing to compile atype library as part of the application. Thisissimilar to using:

Dimvar as bject
Print #output, var.Prop

in Microsoft Visual Basic and contrasts with the macro cal | - di spat ch- get - pr oper t y which requires atype library to be
compiled.

dispinterface-ptr should be a COM interface pointer for thei - di spat ch interface.

The appropriate Automation method, chosen using name, which is either a string naming the method or the integer id of the

111

4 Automation Reference Entries

method.

args are converted to Automation values and are passed as the method's in and in-out parametersin the order in which they
appear. The returned values in value* consist of the primary value of the method (if not void) and the values of any out or in-
out parameters. See 3.3.3 Data conver sion when calling Automation methods for more details.

Thereisalsoset f expander fori nvoke- di spat ch- get - pr oper ty, which can be used as an alternative to the
cal | - di spat ch- put - property macro.

Examples

For example, in order to get and set the W dt h property of an interface pointer in the variable doc:

(i nvoke-di spat ch-get-property doc "Wdth")
(setf (invoke-dispatch-get-property
doc "Wdth")
10)

See also
i nvoke-di spat ch-net hod

i nvoke-di spat ch-put - property
cal | -di spatch-get - property

invoke-dispatch-method Function

Summary

Call a dispatch method from an interface pointer.

Package

com

Signature

i nvoke- di spat ch- net hod dispinterface-ptr name & est args => value*

Arguments

dispinterface-ptr An Automation interface pointer.
namel] A string or integer.

args] Arguments passed to the method.
Values

value* [Values returned by the method.
Description

The function i nvoke- di spat ch- et hod is used to invoke an Automation method from Lisp without needing to compile a
type library as part of the application. Thisis similar to using:

112

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

4 Automation Reference Entries

Dimvar as Object
var. Met hod(1, 2)

in Microsoft Visual Basic and contrasts with the macro cal | - di spat ch- met hod which requires atype library to be
compiled.

dispinterface-ptr should be a COM interface pointer for thei - di spat ch interface.

The appropriate Automation method, chosen using name, which is either a string naming the method or the integer id of the
method.

args are converted to Automation values and are passed as the method's in and in-out parametersin the order in which they
appear. Thereturned values in value* consist of the primary value of the method (if not void) and the values of any out or in-
out parameters. See 3.3.3 Data conver sion when calling Automation methods for more details. If thereis no Automation
method with the given name, then a property getter with the same name iscalled if it exists, otherwise an error is signaled.
Theset f formof i nvoke- di spat ch- met hod can be used to call property setter methods.

Examples

For example, in order to invoke the ReFor nat method of an interface pointer in the variable doc:

(i nvoke-di spat ch- net hod doc "ReFormat")

See also

i nvoke-di spatch-get-property
i nvoke-di spat ch-put - property
cal | - di spat ch- net hod

invoke-dispatch-put-property Function

Summary

Call adispatch property setter method from an interface pointer.

Package

com

Signature

i nvoke- di spat ch- put - property dispinterface-ptr name & est args => value*

Arguments

dispinterface-ptrJ] An Automation interface pointer.
namel] A string or integer.

argsl] Arguments passed to the method.
Values

value* O Values returned by the method.

113

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

4 Automation Reference Entries

Description

The function i nvoke- di spat ch- put - pr oper t y isused to invoke an Automation property setter method from Lisp
without needing to compile atype library as part of the application. Thisis similar to using:

Di m var as Obj ect
var.Prop = 2

in Microsoft Visual Basic and contrasts with the macro cal | - di spat ch- put - pr oper t y which requires atype library to be
compiled.

dispinterface-ptr should be a COM interface pointer for thei - di spat ch interface.

The appropriate Automation method, chosen using name, which is either a string naming the method or the integer id of the
method.

args are converted to Automation values and are passed as the method's in and in-out parametersin the order in which they
appear. The new value of the property should be the last argument. The returned valuesin value* consist of the primary value
of the method (if not void) and the values of any out or in-out parameters. See 3.3.3 Data conversion when calling
Automation methods for more details.

Examples

For example, in order to set the W dt h property of an interface pointer in the variable doc:

(i nvoke-di spat ch-put - property doc "Wdth" 10)

See also

i nvoke- di spat ch- net hod
i nvoke-di spat ch-get-property
cal | -di spat ch- put - property

lisp-variant System Class

Summary

An object that contains atype and avalue.

Package

com

Superclasses

t

Accessors

lisp-variant-type
lisp-variant-val ue

114

4 Automation Reference Entries

Description

Instances of the system class| i sp- vari ant contains atype and avalue, which are described for the function
set-vari ant.

See also

meke-1i sp-vari ant
set-vari ant

make-lisp-variant Function

Summary

Returns a Lisp object that contains a type and a value.

Package

com

Signature

make- | i sp-variant type &optional value => lisp-variant

Arguments

typel] A keyword.
valueld A Lisp object.
Values

lisp-variant Alisp-variant.
Description

Thefunction make- | i sp-vari ant returnsal i sp- vari ant object lisp-variant containing type and value.

lisp-variant can be passed as an argument to an Automation method, to give control over the VT code that the method sees.
The meaning of type and value are as described for set - vari ant .

See also

i sp-vari ant
set-vari ant

115

4 Automation Reference Entries

:midl-type-library-file Defsystem Member Type

Summary

A defsystern member type that can be used to include atype library file in aLisp system definition.

Package

com

Description

When afileis given the defsystem member type: mi dl -t ype-1i brary-fil e, compiling the system will compile the type
library file to produce afasl. Loading the system will load thisfasl. The: package and : mappi ng- opt i ons keywords can
specified asfor mi dl .

The keyword : conponent - name name-spec can be supplied to specify that the source isthe library specified by name-spec.

name-spec should be one of:

t Means that the component name is the same as the modul e name.
A string The name of the component.
A list (component-name keywords-and-val ues) where the keywords and val ues are passed to

fi nd- conponent - t | b when looking for the actual library.

In all cases the module name, less anything after the last dot, is used as the default filename for the compiled file.

The keyword : comcan be supplied to reduce the amount of code generated. For the details, see 3.1.3 Reducing the size of
the converted library.

Examples

Toincludethefilenyfile.tl b inasystem, use

(defsystem my-system ()
:menbers (("myfile.tlb"
ctype :midl-type-library-file)))

To compile the library associated with "OWC10.Spreadsheet”, producing an object filein OAC10. of asl put aclause like
thisin the defsystem form:

(" ONC10. SPREADSHEET" :type :mdl-type-library-file
:com :not-binary
: conmponent - nane t)

To compile the same library, but to a different object file, use:

("ny-owc" :type :mdl-type-library-file
:com :not-binary
: conponent - nane " OAC10. SPREADSHEET")

To compile the same library, but using only version newer than 1.1, use aclause like this:

116

4 Automation Reference Entries

("ny-owc" :type :mdl-type-library-file
:com :not-binary
: conmponent - nane (" OAC10. SPREADSHEET"
:mn-version "1.1"))

See also

find-conponent-tlb
cmdl-file

print-i-dispatch-methods Function

Summary

Prints the defined methods for anii - di spat ch.

Package

com

Signature

print-i-dispatch-nmethods i-dispatch &opti onal arguments-p

Arguments

i-dispatchl Ani - di spat ch interface object.
arguments-pC] A boolean.

Description

Thefunction pri nt -i - di spat ch- et hods prints the methods that are defined for thei - di spat ch i-dispatch.

print-i-dispatch-methods triesto get the information about the methods of i-dispatch and print them in areadable
format. If arguments-pisni | then for each each method it prints its name, followed by the invocation type(s) inside curly
brackets. Invocation types are:

"Method" Invoked by i nvoke- di spat ch- net hod.
"Get" Invoked by i nvoke- di spat ch- get - property.
"Put", "Putref" Invoked by i nvoke- di spat ch- put - property.

If arguments-p istrue, pri nt -i - di spat ch- met hods also prints the types of the arguments for each method. The type of
each argument is shown as a plain string followed by the name of the VT_...constant delimited by curly brackets. The type
may be preceded by:

By reference Means the argument has VT_BYREF. The argument in that is passed in Lisp should be the actual
type. By reference argument values are returned as multiple values, following the return value of
the method if it has one.

Array of Meansit got VT_ARRAY. The argument in Lisp should be an array.

Array of references Meansit got VT_ARRAY and VT_BYREF. The argument needs to be an array of the actua type.

117

4 Automation Reference Entries

The default value of arguments-pisni | .

Notes

1. print-i-dispatch-net hods givesonly partial information, and is therefore useful only for the simple methods
whereit is pretty obvious what the arguments are. |f the arguments are not obvious, you will need to read the actual
documentation.

2. The type Variant means any type, but note that the method may accept only specific types even if the argument is variant.

See also

get -i - di spat ch- nane

i -di spatch

i nvoke-di spat ch-put-property

i nvoke-di spatch-get-property

i nvoke-di spat ch- et hod

3.3.2 Calling Automation methods without atypelibrary

guery-simple-i-dispatch-interface Function

Summary

Queriesthe interface pointer from asi npl e- i - di spat ch object using the type information from another interface.

Package

com

Signature

query-sinpl e-i-di spatch-interface this &ey related-dispatch => interface-ptr, refguid

Arguments
this[] A si npl e-i - di spat ch object.
related-dispatchC] Ani - di spat ch interface pointer.

Values

interface-ptr An interface pointer.
refguidd] Arefguid.
Description

The function quer y- si npl e-i - di spat ch-i nt er f ace isused to obtain an interface pointer from a

si npl e-i - di spat ch interface. Thesi npl e-i - di spat ch contains the interface name provided using its

;i nterface- nane initarg, but it does not have the details of thisinterface, so quer y-si npl e-i - di spatch-interface
must be able to find the details.

In the current implementation, the only way for the details to be found is by supplying related-dispatch. This should be an
interface pointer from which type information about the interface name can be obtained.

118

4 Automation Reference Entries

Thequery-si npl e-i -di spat ch-i nt er f ace function returns two values, interface-ptr which is an interface pointer for
the interface-name contained in this and refguid, which isther ef gui d of that interface-name.

A typical use of quer y- si npl e-i - di spat ch-i nt er f ace istoimplement asink interface for events from some other
component. The interface pointer for that component is passed as related-dispatch because that connects to the type library
containing both interface definitions.

Before using quer y- si npl e-i - di spat ch-i nt er f ace directly, consider the functions
set -i -di spat ch-event - handl er andcr eat e-i nst ance-wi t h- event s, which provide an succinct way to provide an
event callback.

See also

si npl e-i -di spatch
create-instance-w th-events
set-i-dispatch-event-handl er

register-active-object Function

Summary

Registers an instance of a coclass.

Package

com

Signature

regi ster-active-object interface-ptr &ey clsid progid flags => token

Arguments

interface-ptr A COM interface pointer.

clsidd A string or ar ef gui d giving a CLSID to create.
progidC] A string giving aProgl D to create.

flagsl Aninteger.

Values

tokend Aninteger.

Description

Thefunctionr egi st er - acti ve- obj ect registersinterface-ptr in the system Running Object Table for a specific coclass
that the application implements. The coclass can be specified directly by supplying clsid or indirectly by supplying progid,
which will locate the CLSID from the registry.

flags can be an integer as specified for the Win32 API function Regi st er Act i vebj ect . The default value of flagsisO.

The returned value token can be used with r evoke- act i ve- obj ect to revoke the registration.

119

4 Automation Reference Entries

See also

revoke- acti ve- obj ect

revoke-active-object Function

Summary

Unregisters a previously registered instance of a coclass.

Package

com

Signature

revoke- acti ve- obj ect token

Arguments

tokend An integer.

Description

The function r evoke- act i ve- obj ect revokes the registration of the object associated with token in the system Running
Object Table. The value of token should be one that was returned by acall tor egi st er - acti ve- obj ect .

See also

regi ster-active-obj ect

set-error-info Function

Summary

Sets the error information for the current Automation method.

Package

com

Signature

set-error-info &ey iid source description help-file help-context => error-code

Arguments

iidd ni |, asymbol naming a COM interface or ar ef gui d foreign pointer.
sourcel] A string or ni | .

description] A string or ni | .

120

4 Automation Reference Entries

help-filed A stringorni | .

hel p-context[] Aninteger or ni | .

Values

error-code The error code DI SP_E_EXCEPTI ONor ni | if the error info could not be set.
Description

Thefunction set - err or - i nf o alows the various components of the error information to be set for the current Automation
method. It should only be called within the dynamic scope of the body of adef i ne- com net hod definition. The value

DI SP_E_EXCEPTI ON can bereturned asthe hr esul t of the method to indicate failure.
If iid isnon-nil, itisset as|1D of the interface that defined the error, or ni | if none.

If sourceisnon-nil, it is set asthe ProglD for the class that raised the error.

If description is non-nil, it is set as the textual description of the error.

If help-fileis non-nil, it is set as the path of the help file that describes the error.

If help-context is non-nil, it is set as the help context id for the error.

Examples

(define-comnethod (i-robot rotate)
((this i-robot-inpl)
(axis :in)
(angl e-delta :in))
(let ((joint (find-joint axis)))

(if joint
(progn
(rotate-joint joint)
S K)
(set-error-info :iid "i-robot
:description "Bad joint
See also

def i ne- com net hod
get-error-info

refguid
hresul t

set-i-dispatch-event-handler

Summary

Sets an event handler for ani - di spat ch interface.

Package

com

-"))))

121

Function

4 Automation Reference Entries

Signature

set-i-di spatch-event-handl er (interface event-handler &ey all coclass event-object source-names) => sinks

Arguments

interface Ani - di spat ch interface.

event-handlerd A function of four arguments.

ald A generalized boolean, default value false.
coclassl] The coclassto use, or ni | .

event-object[] A Lisp object.

source-names] A list of "source" interface names, or ni | .

Values

sinks A list of objects representing the connections made.
Description

Thefunction set - i - di spat ch- event - handl er setsan event handler for thei - di spat ch interface interface.
event-handler is afunction with the following signature:

event-handler event-obj method-name method-type args

event-obj isthe value of event-object if thisis non-nil. If event-object isni | , event-obj isthe value of interface.
method-name is the method-name that has been called, which is the same as the "event” namein Visual Basic terminology.

method-type is the type of the method. For anormal "event" itis: met hod. method-type can also be: put or: get if the
underlying "source" interface has "propput” or "propget” methods or properties.

argsis an array containing the arguments to the method ("event"). This varies according to the method. For out or in-out
arguments, it is possible to return a value by setting the corresponding value in the array.

all, coclass and source-namestell set - i - di spat ch- event - handl er which "source" interface or interfacesto use. In
most cases, the default is correct.

If all isfase, then only the "default" "source" isused. If all istrue, then set - i - di spat ch- event - handl er usesall the
source interfaces that the coclass defines.

coclasstellsset - i - di spat ch- event - handl er which coclass to use, which is the same as the object in Visual Basic
terminol ogy.

If coclassisni |, it usesthefirst coclassin the type library that has the type of interface as a default interface, or if thereisno
such coclass, the first coclass that has this interface. In most of the cases thisis the desired coclass.

If coclassis non-nil, it specifies which coclassto use. It can be a ProglD (for example " Wor d. Appl i cati on") or acoclass
name or acoclass GUID. If thei - di spat ch interface was created with cr eat e- i nst ance, then the argument to
creat e-i nst ance isthe correct coclassto use.

If source-namesis non-nil, thenitisalist of "source" interface names to use, and all and coclass are ignored. If source-
namesisni | , thenset -i - di spat ch- event - handl er callsget -i - di spat ch- sour ce- nanes to calculate the "source"
interface names.

sinksisalist of objects representing the connectionsthat set - i - di spat ch- event - handl er made. When the events are

122

4 Automation Reference Entries

no longer needed, they can be released by di sconnect - st andar d- si nk.

Notes

1. set -i - di spat ch- event - handl er can be called more than once on the samei - di spat ch, and this generates new
connections each time. Therefore, if it is called more than once such that it uses the same source names, events will

arrive more than once.

2. If you need to call set -i - di spat ch- event - handl er repeatedly, then it is most efficient to call
get -i - di spat ch- sour ce- nanes once and pass the result source-namesto set - i - di spat ch- event - handl er.

3. Thereisauseful function cr eat e-i nst ance-wi t h- event s which combinescr eat e-i nst ance and

set-i-di spat ch-event - handl er.

See also

di sconnect - st andar d- si nk
create-instance-w th-events
get -i - di spat ch-sour ce- nanes

set-variant

Summary

Setsthefieldsin a VARI ANT pointer.

Package

com

Signature

set-variant variant type &opti onal

Arguments

variant[] A foreign pointer to an object of type VARI ANT.
typel] A keyword specifying the type of value.

value

valuell The value to storein variant.

Description

Function

Thefunction set - vari ant can be used to set the type and value of a VARI ANT object. It isuseful if the default type
provided by the automatic conversion for VARI ANT return valuesisincorrect. The value of meaning of typeis an specified

bel ow.

Value of type

VT code used

Expected type of value

123

4 Automation Reference Entries

ni | dynamic any suitable
senpty VT_EMPTY ignored
cnul | VT_NULL ignored
:short VT |2 i nt eger
;1 ong VT |4 i nt eger
:fl oat VT_R4 si ngl e-f1l oat
: doubl e VT_R8 doubl e- f | oat
Y VT_CY
:date VT_DATE
cbstr VT_BSTR string
. di spatch VT_DI SPATCH FLI pointer
serror VT_ERROR ignored
: bool VT_BOOL ni | or nonni |
svari ant VT_VARI ANT FLI pointer
: unknown VT_UNKNOWN FLI pointer
:deci mal VT_DECI MAL
(:unsigned :char) VT_U 1 i nt eger
(:array . type) VT_BYREF + array
VT code for type
;array VT_ARRAY + VT_VARI ANT array
or(:array array)
or(:array . types)
(: pointer type?) VT_BYREF + FLI pointer
VT code for type2

If typeisni | thentheactual VT code is chosen dynamically according to the Lisp type of value (see Automation types, VT
codes and their corresponding Lisp types).

If typeisaconsof theform (: array . type) for somekeyword type, then variant is set to contain an array of objects of
type. Each element of value is expected to be suitable for conversion to type.

If typeis: arr ay or ancther list starting with : ar r ay then variant is set to contain an array of VARI ANT objects with the
same dimensions as value. Each element of value is converted asif by calling set - vari ant with atype chosen as follows:

* If typeisthesymbol : arr ay, then ni | is passed as the element type.

» If typeisof theform (: array array) then array should be an array with the same dimensions as value. The element
type is taken from the corresponding element of array.

o If typeisof theform (: array . types) then typesshould be asuitable valuefor the: i ni ti al - cont ent s argument
to nake- ar r ay to make an array of types with the same dimensions as value. The element type is taken from the
corresponding element of that array. In particular, if valueisavect or of length n then type should be alist of the form

(:rarray typel type2 ... typen).

Examples

(set-variant v :null)

124

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_vector.htm

4 Automation Reference Entries

(set-variant v :short 10)

(set-variant v '(:pointer :short) ptr)

(set-variant v '(:array :short :int) #(1 2))

See also

defi ne- com net hod

simple-i-dispatch Class

Summary

A complete dynamic implementation of thei - di spat ch interface.

Package

com

Superclasses

standard-i - di spatch

Initargs

cinterface-nane The name of the interface to implement. See quer y- si npl e-i - di spatch-i nterface
for details on how thisis used.

i nvoke-cal | back A function that is called with four arguments whenever one of the interface's methodsis
invoked. The arguments are the callback object, the method name as a string, the method
type (akeyword : et hod, : get or: put) and avector of the method's arguments. The
value returned by the function will be returned to the caller of the method See
com obj ect - di spi nt er f ace- i nvoke for more details of the method name, type and
arguments.

Accessors

si mpl e-i - di spat ch-i nvoke- cal | back

Readers

si npl e-i -di spatch-interface-nane
si nmpl e-i -di spat ch-refguid

Description

Theclasssi npl e-i - di spat ch provides a complete implementation of thei - di spat ch interface, without requiring atype
library to be parsed. The type information is obtained at run-time when quer y- si npl e-i - di spat ch-i nterfaceis
caled. Theclassinheritsfrom st andar d- i - di spat ch to providethei - unknown interface.

Thesi npl e-i - di spat ch-r ef gui d reader can be used to return ther ef gui d of theinterface. This can only be called
after guer y- si npl e-i - di spat ch-i nt er f ace has been caled.

125

4 Automation Reference Entries

The implementation obtains the callback object argument to the invoke-callback by calling
si npl e-i - di spat ch-cal | back- obj ect withthesi npl e-i - di spat ch object. The default method returns the
si npl e-i - di spat ch object itself, but this method can be overridden for subclasses to return some other object.

Before using si npl e-i - di spat ch directly, consider the functionsset - i - di spat ch- event - handl er and
create-instance-w th-events, which provide an succinct way to provide an event callback.

See also

query-si npl e-i -di spatch-interface
si npl e-i -di spat ch- cal | back- obj ect
standard-i - di spatch

i -di spatch

capi : ol e-control - pane- si npl e-si nk

simple-i-dispatch-callback-object Generic Function

Summary

A generic function that can be implemented to maodify the first argument to the invoke-callback in si npl e-i - di spat ch.

Package

com

Signature

si npl e-i - di spat ch-cal | back- obj ect this => object

Method signatures

si mpl e-i - di spat ch-cal | back- obj ect (this sinpl e-i-di spatch)

Arguments

this An object of typesi npl e-i - di spat ch.

Values

object The callback object to be pass as the first argument to the invoke-callback of this.
Description

The generic function si npl e- i - di spat ch- cal | back- obj ect iscalled by theimplementation of si npl e-i - di spat ch
to obtain the callback object (first argument) to the invoke-callback of this. This allows the object to be computed in some
way by subclassing si npl e-i - di spat ch and implementing a method on si npl e-i - di spat ch- cal | back- obj ect
specialized for the subclass.

The pre-defined primary method specializing on si npl e-i - di spat ch alwaysreturnsits argument.

Examples

When the function ny- di spat ch- cal | back below is called, itsfirst argument will be the useful-object passed to
make- ny- di spat ch.

126

4 Automation Reference Entries

(defcl ass ny-dispatch (sinple-i-dispatch)
((useful -object :initarg :useful-object)))

(def met hod si npl e-i -di spat ch-cal | back- obj ect
((this nmy-dispatch))
(slot-value this 'useful-object))

(defun make- nmy-di spatch (useful -object)
(make-i nstance
' my-di spatch
:useful - obj ect useful -object
i nvoke-cal | back ' ny-dispatch-cal |l back
cinterface-nane "MyDi spatchlnterface"))

See also

si npl e-i -di spatch

standard-automation-collection Class

Summary

A framework for implementing Automation collections.

Package

com

Superclasses

st andar d-i - di spat ch

Initargs

:count -function A function of no arguments that should return the number of itemsin the collection. This
initarg isrequired.

Jitems-function A function of no arguments that should return a sequence of itemsin the collection. This

function is called by the implementation of _NewEnumand the sequence is copied.
Exactly oneof : i tems-functionand:item generator-function must be
specified.

:itemgenerator-function

A function of no arguments that should return an item generator, which will generate the
itemsin the collection. See below for more details. Exactly one of : i t ens-f uncti on
and:item generator-function mustbe specified.

:data-function A function called on each item that the: i t ens- f uncti on or
;i temgenerator-function returns. Thisis called when iterating, to produce the
value that is returned to the caller.

sitem| ookup-function

A function which takes a single argument, an integer or a string specifying an item. The
function should return the item specified. Thisinitarg isrequired if the:i t em net hod
option isnon-nil in def i ne- aut omati on-col | ecti on.

127

4 Automation Reference Entries

Description

The classst andar d- aut omat i on- col | ect i on provides aframework for implementing Automation collections. These
typically provide aCount property giving the number of objectsin the collect, a_NewEnumproperty for iterating over the
element of the collection method and optionally an | t emmethod for finding items by index or name.

The: count - f unct i on initarg specifies afunction to count the items of the collection and isinvoked by the implementation
of the Count method.

Exactly one of theinitargs: i tem functionand:item generator-function must be specified to provide items for the
implementation of the | EnuniVARI ANT instance returned by the _NewEnummethod.

If :itens-function isspecified, thenit will be called once when _NewEnumis called and should return a sequence of the
itemsin the collection. This sequence is copied, so can be modified by the program without affecting the collection.

If :item generator-function isspecified, it should be an item generator that will generate all the itemsin the
collection. It will be called once with the argument : cl one when _NewEnumis called and then by the implementation of the
resulting | EnunVARI ANT interface. Anitem generator is afunction of one argument which specifies what to do:

: next Return two values. the next item andt . If there are no more items, returnni | andni | .
:skip If there are no more items, return ni | . Otherwise skip the current item and returnt .
:reset Reset the generator so the first item will be returned again.

:cl one Return a copy of the item generator. The copy should have the same current item.

The: dat a- f unct i on initarg should be function to convert each item returned by the : i t ens- f unct i on or the item
generator into a value whose type is compatible with Automation (see Automation types, VT codes and their
corresponding Lisp types). The default functionisi dentity.

Examples

See the example in this directory:

(example-edit-file "com automation/coll ections/")

See also

defi ne-aut omati on-col | ecti on
standard-i - di spatch

i -di spatch

standard-i-connection-point-container Class

Summary

A complete implementation of the Connection Point protocol.

Package

com

128

http://www.lispworks.com/documentation/HyperSpec/Body/f_identi.htm

4 Automation Reference Entries

Superclasses

st andar d-i - unknown

Description

Theclassst andar d-i - connect i on- poi nt - cont ai ner provides acomplete implementation of the Connection Point
protocols. It implementsthe | Connect i onPoi nt Cont ai ner interface and creates connection points for each interface

given by the: out goi ng-i nt er f aces initarg.

If aclass defined with def i ne- aut omat i on- conponent macro specifiesthe: sour ce-i nt er f aces option or has

interfaces with the "source" attribute in its coclass then it must inherit from st andar d- i - connect i on- poi nt - cont ai ner

somehow. def i ne- aut omat i on- conponent passes the appropriate initargs to initialize the class.

The macro do- connect i ons can be used to iterate over the connections (sinks) for a given interface.

Examples

Given the class definition:

(defi ne-aut omati on- conponent cl onabl e- conponent ()

0

(:interfaces i-clonable)
(:source-interfaces i-clonabl e-events)

)

then:

(typep (nmeke-instance 'cl onabl e-conponent)

' standar d-i - connecti on- poi nt - cont ai ner)

=> t

See also

defi ne- aut omat i on- conponent
standard-i - di spat ch

do- connecti ons

defi ne-aut omati on-col | ection
st andar d- i - unknown

i -di spatch

standard-i-dispatch

Summary

A complete implementation of thei - di spat ch interface.

Package

com

Superclasses

st andar d-i - unknown

129

Class

4 Automation Reference Entries

Subclasses

st andar d- aut omati on-col | ecti on
si npl e-i -di spatch

Description

Theclassst andar d-i - di spat ch provides a complete implementation of thei - di spat ch interface, based on the type
information in the type library. In addition, thei - support - error -i nf o interface isimplemented to support error
information. st andar d-i - di spat ch inheritsfrom st andar d- i - unknown to providethei - unknown interface.

All classes defined with the def i ne- aut omat i on- conponent and def i ne- aut omat i on- col | ect i on macros must
inherit from st andar d- i - di spat ch somehow. These macros pass the appropriate initargs to initialize the class.

Examples

Given the class definition:

(defi ne-aut onati on- conponent document-inpl ()

0

(:cocl ass docunent)

)
then:

(typep (meke-instance 'docunent-inpl)
' standar d-i - di spat ch)
=> t

See also

def i ne- aut onati on- conponent

defi ne-aut omati on-col |l ection
standard-i - connecti on- poi nt - cont ai ner
st andar d-i - unknown

i -di spatch

with-coclass Macro

Summary

Executes a body of code with atemporary instance of acoclass.

Package

com

Signature
wi t h-cocl ass disp {form}* => value*

disp :: = (dispatch-function coclass-name &key interface-name punk clsctx)

130

4 Automation Reference Entries

Arguments
disp The names of the dispatch function, coclass and so on.
formO A form to be evaluated.

dispatch-functionC A symbol which will be defined as a macro, asif by wi t h- di spatch-interface. The
macro can be used by forms to invoke the Automation methods of the component.

coclass-namel] A symbol which names the coclass. It is not evaluated.
interface-name] A symbol naming an interface in the coclass. It is not evaluated.
punkCJ A symbol which will be bound to the interface pointer.

clsctx] A CLSCTX value, which defaultsto CLSCTX_SERVER.
Values

value* The values returned by the last form.

Description

Themacrowi t h- cocl ass calscr eat e- obj ect to make an instance of the coclass named by the symbol coclass-name.

If interface-name is supplied then that interface is queried from the component, otherwise the default interface is queried.

Each formis evaluated in turn with dispatch-function bound of alocal macro for invoking methods on the interface, asif by
wi t h- di spat ch-i nt er f ace. After the forms have been evaluated, the interface pointer is released.

If punk is supplied, it will be bound to the interface pointer while the forms are being eval uated.

clsctx indicate the execution contexts in which an object isto be run. It defaults to CLSCTX_SERVER.

Examples

If atypelibrary containing the coclass Test Conponent has been converted to Lisp, then following can be used to make an
instance of component and invoke the Gr eet () method on the default interface.

(with-coclass (call-it test-component)
(call-it greet "hello"))
See also

creat e-obj ect

with-dispatch-interface Macro

Summary

Used to simplify invocation of several methods from a particular Automation interface pointer.

Package

com

131

4 Automation Reference Entries

Signature

wi t h-di spatch-interface disp dispinterface-ptr {form}* => value*

disp :: = (dispatch-function dispinterface-name)
Arguments
disp The names of the dispatch function and Automation interface.

dispinterface-ptr 0 A formwhichis evaluated to yield aCOM i - di spat ch interface pointer.
formO A form to be evaluated.

dispatch-function A symbol which will be defined as amacro, asif by macr ol et . The macro can be used
by forms to invoke the methods on dispinterface-ptr.

dispinterface-namel] A symbol which names the Automation interface. It is not evaluated.

Values

value* The values returned by the last form.

Description

When the macro wi t h- di spat ch-i nt er f ace evaluates forms, the local macro dispatch-function can be used to invoked
the methods for the Automation interface dispinterface-name, which should be the type or a supertype of the actual type of
the Automation interface pointer dispinterface-ptr.

dispatch-function has the following signature:

dispatch-function method-name arg* => values

where:

method-name A symbol which names the method. It is not evaluated.

arg Arguments to the method (see 3.3.3 Data conver sion when calling Automation methods for
details).

values Values from the method (see 3.3.3 Data conver sion when calling Automation methods for
details).

Examples

For example, in order to invoke the ReFor mat method of a MyDocunent interface pointer:

(with-dispatch-interface (call-doc ny-docunent) doc
(call-doc re-format))

See also

cal | - di spat ch- net hod

132

http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm

5 Tools

The tools described in this chapter extend the LispWorks IDE to help with debugging applications using COM/Automation.
See the LispWorks IDE User Guide for more details of common operations that can be performed within these tools. The

sections below describe each tool.

5.1 The COM Implementation Browser

The COM Implementation Browser allows prototype code for COM implementation classes to be viewed and created. Thisis
useful when writing COM methods because it provides a template for the method names and arguments. To start the tool,

choose Tools > Com Implementation Browser from the LispWorks podium.

COM Implementation Browser

Mame of class th.-acriptir.m

Lom Implementaton Browser 1

LB

FOD-E=HMPL-2 W Blew, Edi..
i= [E] Foo-meimpl-3 (define-com-inplenentation Fom-ex-impl-2 -
= [oo
=1 | Descriphon { foo-impl-12 :: Swperclasses
i ud 47 foo-ex—-impl-1 1}
M| meth
:':Hm {) :: implementation slots
e
= @ M) methd 33 Implemented interfaces
IE__]L'JE:;H[I:Im I:'i ILertdces i—fnl:l
el i 17 i-Foo-ex)
M| et 17 Other inplementation options gqo here
0
Pra]
sen Pefining methods For interface i-foo
e T "
::: Uncomment the dethods asfuhen you needs
to implement them.
Ll
(define-com-method §i-Fon nethi)
{(this Foo-ex-impl-21)
i Insert implemenfation here
com:s ok} ;; Result) type = hresult
< 3| 1% v
Iﬂ:eady. 1 ll
Interface L{‘-‘thtﬂ Prototype implementation

133

5 Tools

At the top of the window is adrop down list a class names. Choosing an item from thislist will set the contents of the
Description panel to show that class at the root of the tree, with subitems for each COM interface that it implements. The
COM interfaces have subitems for their uuids and methods. The icon used for a method in the tree indicates the status of its
implementation: red means not implemented (see 1.9.4 Unimplemented methods), yellow meansinherited from a

superclass (see 1.9.5 Inheritance), red and yellow means an inherited unimplemented method and cyan means a method
implemented directly in the named class.

Selecting an item in the Description pane will display a prototype implementation for that part of the class, using the
appropriate macros for COM and Automation classes.

The New and Edit buttons allow prototype classes to be constructed and modified. Such classes are shown in the list of class
names as Example class... and are not actually defined, but the prototype code can be copied into afile and evaluated to
provide a starting point for an implementation. Clicking New or Edit displays a dialog as shown below.

COM Implementation Wizard

% Com Implementation Browser 1 [‘5—(|

Com Implementation ‘wizard
LComponent Clags Mame | FOO-Ex-IMPL-2

(*) Com () Automation
Twpe Library

Select the interfaces to implement az part of your component.

COM::|-CLASS-FACTORY
[-FOO

|-FO0-E=
|-HMOMDELEGATIMG-LIMEMOWHM
|-UMEMOWH

ak. | | Cancel

The class name is displayed at the top and can be edited. For COM object classes, thelist at the bottom of the dialog shows

134

5 Tools

the COM interfaces that the class will implement. For Automation interfaces, atype library must be chosen from the drop-
down list and one of the Coclass or Interfaces options selected to show thelist of coclasses or interfaces that the class will
implement. Click OK to confirm your choice or Cancel to discard it.

5.2 The COM Object Browser

The COM Object Browser isused view COM objects for the classes implemented by Lisp. To start the tool, choose Tools >
Com Object Browser from the LispWorks podium.

COM Object Browser

" Com Object Browser 1 |Z”E|E|

Active COM Objectz

|nterfaces of selected objects

H<COM interface |-FO0 = 00382055 for #<FOO-IMPL-1 21825766
H<COM interface |-FO0-Ex = QO3BACES for $<FOO-Ex-IMPL-2 2180F01 7

The Active COM Objects list shows all the Lisp objects that are known to the COM runtime system. Selecting objects from
thislist will list the COM interface pointers that have been queried for these objects. Double clicking on either list will
inspect the data. Use the Works > Object menu or the context menu to perform other operations on the selected COM
Objects.

5.3 The COM Interface Browser

The COM Interface Browser allows the interfaces that have been converted to FLI definitions to be viewed. To start the tool,
choose Tools > Com Interface Browser from the LispWorks podium.

135

5 Tools

COM Interface Browser

Cere Ieive ey Nreaser 1 r__l .-_il EI
= T o e e T ioi Ilmage far CIH leaterface = 1 Tem #x &
E I cew HEURABBHHHHHHEHEA A HIE R R R YR HH e

M = down
-l R T e e =
LT RN A i5i lsdng camsefTa-rar-inkerface
1‘B"- e -I'.-|I - §OE T S S S . -
= o ';III:" o Judth-ram-1aferface [perforn-fepeteh 1-Fra-ex)
LT LG Loberfave FI o
;E F - .
ir
= I e 12 Desiigrlon oF INTEFFIDE AETERGD (L-Fia=-cK BECAL)
i 1z Fmuk dArquresatsy
In H Ihis meThod acccpls o arguicnls?
i3 Ualnae Eefaraesd =
ralara walus Irespll
IE.lI“ Pple valae hind © reburn velms=
GECT FIPTILS pITED METHA)
i3 Prerfarn chenk en HEFsn 1t usdoe
sl iirezall relurn-oele SOl beaowx malihg]
i . Lladg ol vcede ...
1
1
R M R .
Ling camicill-Coir intertact
" . 1 . .
2 NCSEFIATLOE B% LETEFFIDC AETPOD CL-diag-Ck WEDNL)
i3 Trpuk ArgqoreEa®s z
H Ihiz melhod dvcvpls Bu aryeienla?
i3 Unlpas Eafarand =
ralarn welus Irespll
|EI.II|| iple valae hind § reburn vefle 5
gZall-cam-LATErkaLe | ELN felerbace FIHZE" D=Fdiecn ielhk) i
13 Prefarn shenh an HEsenlt uelie
sulmok hresall relurn wveles "Cul T wx malhiliy)]
] ¥ -
| [EETe
[nterfaces and methods Prototype code for invoking methods

The left hand pane shows atree of the interfaces, with subitems for their uuids and methods. Selecting an item will cause the
right-hand pane to show prototype code for invoking the method(s) selected.

5.4 Editor extensions

The LispWorks editor has been enhanced to support COM.

5.4.1 Inserting GUIDs

The editor command | nsert GUI D can be used to insert anew GUID at the current point. The GUID is made by calling
CoCr eat eGUI D.

5.4.2 Argument lists

The editor command Function Arglist (Al t +=) has been extended to show the arguments for all COM methods which match
the function name.

136

6 Self-contained examples

This chapter enumerates the set of examplesin the LispWorks library relevant to the content of this manual. Each example
file contains complete, self-contained code and detailed comments, which include one or more entry points near the start of
the file which you can run to start the program.

To run the example code:

1. Open thefilein the Editor tool in the LispWorks IDE. Evaluating the call to exanpl e-edi t-fi | e shown below will
achieve this.

2. In some cases you can simply compile the example code, by Ct r | +Shi f t +B, and then place the cursor at the end of the
entry point formand pressCt r1 +X Ct r| +Eto run it. However the comments near the start of the file may have specific
instructions, such as how to build a delivered executable or library, so follow these if present.

6.1 Argument passing

These files comprise an example illustrating various argument passing issues when calling and implementing COM methods.
To run the example, follow the instructionsin def sys. | i sp.

(exanpl e-edit-file "conm nanual / ar gs/ def sys")
(exanpl e-edit-file "com nmanual /args/args.idl")
(exampl e-edit-file "com nanual / args/args-inpl")

(exanpl e-edit-file "com manual / args/args-calling")

6.2 Aggregation
These three files contain a simple demonstration of implementing aggregation:

(exanple-edit-file "conl conf aggr egati on-def sys")
(example-edit-file "com com aggregation-idl.idl")

(exanple-edit-file "conl com aggregation")

6.3 OLE embedding of external components
These examplesillustrate OL E embedding of external componentsin a CAPI interface:

(exanple-edit-file "confol e/ htm -viewer")
(example-edit-file "com ol e/ fl ash-pl ayer")

137

6 Self-contained examples

6.4 Building an ActiveX control

These three files together comprise an example which illustrates building an ActiveX control. Start by reading the comments
inthefirst file:

(exanple-edit-file "confole/control -inplementation/deliver")
(exanpl e-edit-file "confol e/ control -inpl enentati on/ def sys")

(example-edit-file
"coni ol e/ control -i npl emrent ati on/ my-control -i npl ement ati on")

This file shows how you can embed the new ActiveX control in another application:

(example-edit-file
"coni ol e/ control -i npl enent ati on/1isp-container")

6.5 OLE automation
These examplesillustrate using OL E automation:

(exanmple-edit-file "com automation/internet-explorer/sinple")

(exanple-edit-file "conf aut omati on/ excel / pi e-chart")

Thisisasimple example of an Automation collection interface. Follow the instructionsin def sys. | i sp:

(exanple-edit-file "confautomation/collections/defsys")

(exanple-edit-file
"conif aut omati on/col |l ections/collection-test.idl")

(exanmple-edit-file "com automation/collections/client")
(exanple-edit-file "con automation/coll ections/server")

(exanple-edit-file "confautomation/collections/conpile-tlb")

Thisis an example of building and testing a CAPI application that can be controlled by Automation. Start withr eadne. t xt :

(exanple-edit-file "conf aut omati on/ capi-application/readne.txt")
(exampl e-edit-file "com aut omati on/ capi-application/build")
(example-edit-file "conm autonati on/ capi-application/defsys")
(exanple-edit-file "confautonation/capi-application/listapp.idl")

(exampl e-edit-file "com automati on/ capi-application/listapp.tlb")

138

6 Self-contained examples

(exanple-edit-file "conf aut omati on/ capi-application/autonmation")
(example-edit-file "com aut omati on/ capi-application/application")

(exanple-edit-file "conf automati on/ capi-application/test")

Thesetwo filesillustrate use of the Crystal DesignRunTime component:

(exanmple-edit-file "com autonation/crystal-reports/deliver")

(exanple-edit-file "conf automation/crystal-reports/aubrowse")

This example illustrates using events with Internet Explorer:

(exanple-edit-file "confautonmation/events/ie-events")

Thisis an example of building an Automation server without a GUI.

(example-edit-file "com automation/cl-sntp/clsntp-inpl-build")
(exampl e-edit-file "com automation/cl-sntp/clsntp.idl ")
(exanple-edit-file "comautomation/cl-sntp/clsntp.tlb")
(exanple-edit-file "comautomation/cl-sntp/clsntp-inpl")
(exanple-edit-file "comautomation/cl-sntp/server")

(example-edit-file "com automation/cl-sntp/clsntp-test")

139

| ndex

A
acCessors
interface-ref 54
lisp-variant-type lisp-variant 114

lisp-variant-value [lisp-variant 114

si npl e-i -di spatch-i nvoke-cal | back sinple-i-dispatch 125

ActiveX controls preface 8

add-ref function 27 1.6: Referencecounting 12

aut ormat i on- server-conmand- | i ne-action function 28
aut onati on-server-main function 28

aut omati on-server-top-loop function 30

C

call-cominterface macro 31 1.8: Calling COM interface methods 12

call -comobject macro 32 1.9.2: Thelifecycle of a COM object 19,

call -di spatch-get-property macro 87
cal | -di spatch-method macro 88

cal | -di spat ch-put-property macro 89
Calling

1.10: Calling COM object methods fromLisp 24

Automation methods: using atypelibrary 3.3.1: Calling Automation methods using a typelibrary 81

Automation methods: without using atypelibrary 3.3.2: Calling Automation methods without a type library 81

COM interfacemethods 1.8: Calling COM interface methods 12
COM object methods 1.10: Calling COM object methods fromLisp 24
check-hresult macro 34
classes
com obj ect 38
sinple-i-dispatch 125
st andar d- aut omati on-col | ection 127
st andar d-i - connecti on- poi nt - cont ai ner 128
standard-i-dispatch 129
standard-i -unknown 71
classfactories 1.9.3: Classfactories 20
class options
:cocl ass define-automation-conponent 97
:cocl ass-reusabl e-p define-autonmation-conmponent 97

:dont -i npl enent define-cominpl enentation 47

140

Index

.extra-interfaces define-autonation-conponent 97
cinherit-from define-cominplenentation 46
cinterface define-automation-collection 96
cinterfaces define-cominplenmentation 46, define-automation-conponent 97
citemnmethod define-automation-collection 96
:source-interfaces define-automation-conponent 97
:cocl ass classoption defi ne-automati on-conponent 97
. cocl ass-reusabl e-p classoption defi ne-aut onati on- conponent 97
co-create-guid function 34
co-initialize function 35 19.1: Sepsrequiredtoimplement COM interfaces 18
collections
implementing 3.4.3: Implementing collections 85
using 3.3.4: Using collections 83
com di spat ch-i nvoke-exception-error conditionclass 90
com di spat ch-i nvoke-exception-error-info function 91
comerror conditionclass 36
comerror-function-name function comerror 36
comerror-hresult function comerror 36

cominterface systemclass 37 1.8: Calling COM interface methods 12, 3.3.1: Calling Automation methods using a type
library 81, 3.3.2: Calling Automation methods without a type library 82

cominterface-refguid function 38
COM interface types
i -dispatch 108
i -unknown 55
comobject class 38
com obj ect -destructor genericfunction 39 1.9.2: Thelifecycle of a COM object 19
com obj ect - di spi nterface-i nvoke genericfunction 92
com obj ect-from pointer function 40
comobject-initialize genericfunction 41 1.9.2: Thelifecycle of a COM object 19
com obj ect -query-interface genericfunction 41
compiling IDL files 1.1: Prerequisites 10
condition classes
com di spat ch-i nvoke- exception-error 90
comerror 36
connection points
implementing 3.4.4: Implementing connection points 85
using 3.3.5: Using connection points 83
CoTaskMemAl | oc co-task-memal loc 43
co-task-memal l oc function 42 1.8.1.3: In-out parameters 16

CoTaskMenFree co-task-nemfree 44

141

Index

co-task-memfree function 43 1.8.1.2: Outparameters 14, 1.8.1.3: In-out parameters 16
co-uninitialize function 44

:count-function initarg standard-automation-collection 127
create-instance function 45

create-instance-w th-events function 93

create-object function 94

D

:data-function initag standard-automation-collection 127
define-automation-collection macro 95
defi ne- aut omati on- conponent macro 96
define-cominplenentation macro 46 1.9.1: Sepsrequired toimplement COM interfaces 18
define-comnmethod macro 48 1.9.1: Sepsrequired toimplement COM interfaces 18
defi ne-di spinterface-nethod macro 98
defsystem member types
mdl-file 60 122: Generating FLI definitions from COM definitions 10
mdl-type-library-file 116 3.1.2: Generating FLI definitions from COM definitions 80

del i ver function 1.24: MakingaCOM DLL with LispWorks 11, automation-server-main 30, automation-server-top
-loop 31

destruction 1.9.2: Thelifecycle of a COM object 19
di scard-connecti on function do-connections 102
di sconnect - st andard-si nk function 100

dispinterface 3.1.3: Reducing the size of the converted library 80, 3.4.1: A completeimplementation of an Automation server 84, 34.2: A
simple implementation of a single Automation interface 84, com obj ect-di spi nterface-i nvoke 92, define-
di spinterface-nethod 98

:dl | -exports ddivery keyword 1.2.4: Makinga COM DLL with LispWorks 11, set-register-server-error-reporter 69
do-col lection-items macro 100

do-connections macro 101

:dont-i npl enent classoption define-cominplenentation 47

dua interface 3.1.3: Reducing the size of the converted library 80, 3.4.1: A completeimplementation of an Automation server 84

E
editor commands
Function Arglist 54.2: Argumentlists 136
Insert GUD 54.1: InsertingGUIDs 136
environment variables
I NCLUDE midl 58, mnidl-set-inport-paths 60
errors
handling in Automation ~ 3.3.6: Error handling 83
handling in COM 1.8.2: Error handling 17
reporting 3.4.5: Reporting errors 85
events

see connection-points 3.4.4: Implementing connection points 85

142

Index

sextra-interfaces classoption define-automation-conponent 97

=
find-clsid function 49
find-component-tlb function 102
find-component - val ue function 103

FLI type descriptors

hresul t 53
refguid 63
refiid 64

Function Arglist editorcommand 54.2: Argumentlists 136
:function-nane initaag comerror 36
functions
add-r ef 27
aut omat i on-server-conmmand-|ine-action 28
autonmati on-server-main 28
aut omati on-server-top-loop 30
co-create-guid 34
co-initialize 35 1.9.1: Sepsrequiredtoimplement COM interfaces 18
com di spat ch-i nvoke-exception-error-info 91
comerror-function-name comerror 36
comerror-hresult comerror 36
cominterface-refguid 38
com obj ect-from pointer 40
co-task-memalloc 42 1813: In-out parameters 16
co-task-nemfree 43 1812: Outparameters 14, 1.8.1.3: In-out parameters 16
co-uninitialize 44
create-instance 45
create-instance-with-events 93
creat e- obj ect 94
di scard-connection do-connections 102
di sconnect - standard-sink 100
find-clsid 49
find-conmponent-tlb 102
find-conponent -val ue 103
get-active-obj ect 105
get-error-info 106
get-i-di spatch-name 107
get -i -di spat ch- sour ce- nanes 108
get - obj ect 50
gui d- equal 51
guid-to-string 52
143

Index

hresul t - equal 53

i nterface-connect 109

i nterface-di sconnect 110

i nvoke-di spatch-get-property 111

i nvoke-di spatch-nethod 112

i nvoke-di spat ch- put -property 113

make-factory-entry 55 19.1: Stepsrequiredtoimplement COM interfaces 18, 1.9.3: Classfactories 20
make-guid-fromstring 56

make- | i sp-vari ant 115

m dl 57 1.2.2: Generating FLI definitions from COM definitions 10

m dl -defaul t-inport-paths 59

mdl -set-inport-paths 60

print-i-dispatch-nethods 117

query-interface 61

query-sinple-i-dispatch-interface 118
refguid-interface-nane 63

regi ster-active-obj ect 119

regi ster-class-factory-entry 65 1.9.1: Sepsrequiredtoimplement COM interfaces 18, 1.9.3: Classfactories 20
regi ster-server 66

rel ease 67

revoke- acti ve-obj ect 120

server-can-exit-p 67

server-in-use-p 67

set-autonmti on-server-exit-delay 68

set-error-info 120

set -i-di spat ch- event - handl er 121
set-register-server-error-reporter 69

set-vari ant 123

simpl e-i-di spatch-interface-nane sinple-i-dispatch 125
simpl e-i-dispatch-refguid sinple-i-dispatch 125
start-factories 72 19.1: Sepsrequired toimplement COM interfaces 18, 1.9.3: Classfactories 20
stop-factories 72

unr egi ster-server 74

G

Garbage collection 1.9.2: Thelifecycle of a COM object 19

generic functions
com obj ect - dest ruct or 39 1.9.2: Thelifecycle of a COM object 19
com obj ect - di spi nterface-i nvoke 92
comobject-initialize 41 1.9.2: Thelifecycleof a COM object 19
com obj ect-query-interface 41

si npl e-i -di spat ch- cal | back- obj ect 126

144

Index

get-active-object function 105

get-error-info function 106 1.8.2: Error handling 17
get-i-di spatch-name function 107

get-i-di spat ch-source-nanes function 108

get - obj ect function 50

gui d- equal function 51

guid-to-string function 52

H
hresult FLI typedescriptor 53
chresult initaag comerror 36

hresul t-equal function 53

I
i -di spatch COM interfacetype 108
IDL
compiling 1.1: Prerequisites 10
iid_isattribute 1.8.1.2: Outparameters 15
| NCLUDE environment variable nidl 58, midl-set-inport-paths 60
inheritance 1.9.5: Inheritance 20
cinherit-from classoption define-cominplementation 46
initialization
CLOSobject 1.9.2: Thelifecycle of a COM object 19
COM object 1.9.2: Thelifecycle of a COM object 19

in-out parameters 1.8.1.3: In-out parameters 16, 1.9.6.4: In-out parameters 24, 1.10.1.3: In-out parameters 25, 3.3.3: Data
conversion when calling Automation methods 82

inparameters 1.8.1.1: Inparameters 13, 1.9.6.2: Inparameters 23, 1.10.1.1: Inparameters 25, 3.3.3: Data conversion when calling
Automation methods 82

Insert GUI D editorcommand 5.4.1: Inserting GUIDs 136
cinterface classoption define-automation-collection 96

nt er f ace- connect function 109

nt erface-di sconnect function 110
interface-nane initarg sinple-i-dispatch 125

nterface-ref accessor 54

sinterfaces classoption define-cominplenmentation 46, define-autonmation-conmponent 97

:invoke-cal | back initaag sinple-i-dispatch 125

nvoke- di spat ch-get-property function 111

nvoke- di spat ch-nmet hod function 112

nvoke- di spat ch- put - property function 113
itemgenerator-function initaag standard-automation-collection 127
sitem | ookup-function initaag standard-autonation-collection 127

:item net hod classoption define-autonmation-collection 96

145

Index

sitems-function initag standard-automation-collection 127

i -unknown COM interfacetype 55

L

lisp-variant systemclass 114
lisp-variant-type accessor |isp-variant 114
i sp-variant-val ue accessor |isp-variant 114
M

macros

call-cominterface 31
cal | -com obj ect 32 1.9.2: Thelifecycle of a COM object 19
cal | -di spatch-get-property 87
call-dispatch-nethod 88
cal | -di spatch-put-property 89
check- hresul t 34
define-automation-collection 95
defi ne-aut omat i on- conponent 96
define-cominplementation 46 19.1: Sepsrequired toimplement COM interfaces 18
define-commethod 48 1.9.1: Sepsrequired toimplement COM interfaces 18
defi ne-di spinterface-method 98
do-collection-items 100
do- connections 101
query-object-interface 62 19.2: Thelifecycle of a COM object 19
s_ok 70
succeeded 73
wi th-coclass 130
with-cominterface 75
wi t h- com obj ect 76
wi th-dispatch-interface 131
wi th-query-interface 77
with-tenp-interface 78
make-factory-entry function 55 1.9.1: Sepsrequiredtoimplement COM interfaces 18, 1.9.3: Classfactories 20
make- gui d-from string function 56
make- | i sp-variant function 115
makingaCOM DLL 1.2.4: Makinga COM DLL with LispWorks 11
m dl function 57 1.2.2: Generating FLI definitions from COM definitions 10
m dl -defaul t-inport-paths function 59

m dl . exe 1.2.2: Generating FLI definitionsfrom COM definitions 10, 1.8.1: Data conversion when calling COM methods 13, 1.9.6:
Data conversion in define-comrmethod 22

:mdl-file defsysemmembertype 60 1.2.2: Generating FLI definitions from COM definitions 10
m dl -set-inport-paths function 60

146

Index

cmdl-type-library-file defsyssemmembertype 116 3.1.2: Generating FLI definitions from COM definitions 80
modules
automati on 3.1.1: Loading the modules 80

com 121: Loadingthemodules 10, 3.1.1: Loadingthemodules 80

N
namemapping 1.3: The mapping from COM namesto Lisp symbols 11
New in LispWorks 7.0
m dl -defaul t-inport-paths function 59
m dl -set-inport-paths function 60
Optional Automation parameters can be passed as: not - speci fi ed 3.3.3: Data conversion when calling Automation methods 82
print-i-dispatch-nethods function 117
Search paths for IDL import statements i dl 58
set-register-server-error-reporter function 69
New in LispWorks 7.1

var ar g Automation parameterswill be convertedtoanarray 1.9.6.1: FLItypes 23, 3.3.3: Data conversion when calling Automation
methods 82, define-dispinterface-nethod 99

Newly documented in LispWorks 7.0

stype-library classoptionfordefi ne-aut omati on- conponent define-automation-conponent 98

O
OLE preface 8
other applications
registering objectsfor ~ 3.4.6 : Registering a running object for use by other applications 85
;out er-unknown initarg standard-i-unknown 71
out parameters 1.8.1.2: Out parameters 14, 19.6.3: Out parameters 23, 1.10.1.2: Out parameters 25, 3.3.3: Data conversion when
calling Automation methods 82
P
parameter direction

in 181.1: Inparameters 13, 1.9.6.2: Inparameters 23, 1.10.1.1: Inparameters 25, 3.3.3: Data conversion when calling
Automation methods 82

in-out 1.8.1.3: In-out parameters 16, 1.9.6.4: In-outparameters 24, 1.10.1.3: In-out parameters 25, 3.3.3: Data conversion when
calling Automation methods 82

out 1.8.1.2: Outparameters 14, 1.9.6.3: Out parameters 23, 1.10.1.2: Out parameters 25, 3.3.3: Data conversion when calling
Automation methods 82

Primitivetypes 1.8.1: Data conversion when calling COM methods 13, 1.9.6.1: FLI types 22
print-i-dispatch-nethods function 117

propget atribute 1.3: The mapping from COM namesto Lisp symbols 11

propgput atribute 1.3: The mapping from COM namesto Lisp symbols 11

propgput r ef atribute 1.3: The mapping from COM namesto Lisp symbols 11

Q

query-interface function 61 1.7: Queryingfor other COM interface pointers 12

147

Index

query-object-interface macro 62 1.9.2: Thelifecycleof a COM object 19
query-sinpl e-i-dispatch-interface function 118

: qui t-when-no-w ndows delivery keyword automati on-server-top-loop 31

R
refguid FLItypedescriptor 63
refgui d-interface-nane function 63
refiid FLItypedescriptor 64 1.7: Querying for other COM interface pointers 12
regi ster-active-object function 119
regi ster-class-factory-entry function 65 1.9.1: Sepsrequiredtoimplement COM interfaces 18, 1.9.3: Classfactories 20
regi ster-server function 66
registry
component values fi nd- conponent -val ue 103
guid find-clsid 49
ProglD find-clsid 49
typelibrary versions fi nd-conponent-tlb 102
rel ease function 67 1.6: Referencecounting 12
retval attribute 3.3.3: Data conversion when calling Automation methods 82

revoke-active-object function 120

S

save-i mage function 1.2.4: Makinga COM DLL with LispWorks 11, automati on-server-main 30
Self-contained examples
ActiveX controls 6.4 : Building an ActiveX control 138
aggregation 6.2: Aggregation 137
argument passing 6.1: Argument passing 137
Automation 3.5: Examplesof using Automation 86
calling and implementing COM methods 6.1: Argument passing 137
COM/Automation 6: Self-contained examples 137, 6.4: Building an ActiveX control 138
Controlling an Automation application 3.5: Examples of using Automation 86
embedding external components 6.3: OLE embedding of external components 137
event handlers 6.5: OLE automation 139
events 6.5: OLE automation 139
Getting eventsfrom COM interfaces 3.5: Examples of using Automation 86
OLE automation 6.5: OLE automation 138
OLE embedding 6.3: OLE embedding of external components 137
server-can-exit-p function 67
server-in-use-p function 67
set-aut omati on-server-exit-delay function 68
set-error-info function 120 define-comnethod 49, 3.4.5: Reportingerrors 85
set-i-di spatch-event-handl er function 121

set-regi ster-server-error-reporter function 69

148

Index

set-variant function 123

sinple-i-dispatch class 125

si npl e-i -di spat ch-cal | back- obj ect genericfunction 126

simpl e-i -di spatch-interface-nane function sinple-i-dispatch 125
si npl e-i -di spatch-i nvoke-cal | back accessor sinple-i-dispatch 125
sinmpl e-i-di spatch-refguid function sinple-i-dispatch 125

size_i s atribute 1.8.1.1: Inparameters 13, 1.8.1.2: Out parameters 15, 1.8.1.3: In-out parameters 16, 1.9.6.2: In
parameters 23, 19.6.3: Outparameters 23, 1.9.6.4: In-outparameters 24, 1.10.1.1: Inparameters 25, 1.10.1.2: Out
parameters 25, 1.10.1.3: In-out parameters 25

s_ok macro 70

sour ce attribute defi ne- aut omati on- conponent 97

source interfaces 3.4.4: Implementing connection points 85

:source-interfaces classoption define-autonation-conponent 97

st andar d- aut omati on-col l ection class 127

st andard-i - connecti on-poi nt-contai ner class 128

standard-i-di spatch class 129

standard-i-unknown class 71

start-factories function 72 1.9.1: Sepsrequiredtoimplement COM interfaces 18, 1.9.3: Classfactories 20
stop-factories function 72

stringattribute 1.8.1.1: Inparameters 13, 1.8.1.2: Outparameters 14, 1.8.1.3: In-out parameters 16, 1.9.6.2: In
parameters 23, 1.9.6.3: Out parameters 23, 1.9.6.4: In-out parameters 24, 1.10.1.1: Inparameters 25, 1.10.1.3: In-out
parameters 25

succeeded macro 73
system classes

cominterface 37 1.8: CallingCOM interfacemethods 12, 3.3.1: Calling Automation methodsusing atypelibrary 81, 3.3.2:
Calling Automation methods without a type library 82

lisp-variant 114

T
tools
COM Implementation Browser ~ 5.1: The COM Implementation Browser 133
COM Interface Browser 5.3: The COM Interface Browser 135
COM Object Browser 5.2: The COM Object Browser 135
typelibraries 3.1.2: Generating FLI definitions from COM definitions 80

U
unimplemented methods ~ 1.9.4: Unimplemented methods 20

unregi ster-server function 74

V

var ar g attribute 1.9.6.1: FLItypes 23, 3.3.3: Data conversion when calling Automation methods 82, defi ne-di spinterface-
net hod 99

149

Index

W

Windowsregistry find-clsid 49, find-conponent-tlb 102, find-conponent-value
wi th-coclass macro 130

with-cominterface macro 75 1.8: Calling COM interface methods 12
with-comobject macro 76 1.10: Calling COM object methods fromLisp 24

wi t h-di spatch-interface macro 131

Wi th-query-interface macro 77 1.7: Querying for other COM interface pointers 12

with-tenp-interface macro 78 1.6: Referencecounting 12

150

103

	COM/Automation User Guide and Reference Manual
	Copyrights and Trademarks
	Contents
	Preface
	1 Using COM
	1.1 Prerequisites
	1.2 Including COM in a Lisp application
	1.2.1 Loading the modules
	1.2.2 Generating FLI definitions from COM definitions
	1.2.3 Standard IDL files
	1.2.4 Making a COM DLL with LispWorks

	1.3 The mapping from COM names to Lisp symbols
	1.4 Initializing the COM runtime
	1.5 Obtaining the first COM interface pointer
	1.6 Reference counting
	1.7 Querying for other COM interface pointers
	1.8 Calling COM interface methods
	1.8.1 Data conversion when calling COM methods
	1.8.1.1 In parameters
	1.8.1.2 Out parameters
	1.8.1.3 In-out parameters

	1.8.2 Error handling

	1.9 Implementing COM interfaces in Lisp
	1.9.1 Steps required to implement COM interfaces
	1.9.2 The lifecycle of a COM object
	1.9.3 Class factories
	1.9.4 Unimplemented methods
	1.9.5 Inheritance
	1.9.5.1 An example of multiple inheritance
	1.9.5.2 A second example of multiple inheritance

	1.9.6 Data conversion in define-com-method
	1.9.6.1 FLI types
	1.9.6.2 In parameters
	1.9.6.3 Out parameters
	1.9.6.4 In-out parameters

	1.10 Calling COM object methods from Lisp
	1.10.1 Data conversion when calling COM object methods
	1.10.1.1 In parameters
	1.10.1.2 Out parameters
	1.10.1.3 In-out parameters

	2 COM Reference Entries
	add-ref
	automation-server-command-line-action
	automation-server-main
	automation-server-top-loop
	call-com-interface
	call-com-object
	check-hresult
	co-create-guid
	co-initialize
	com-error
	com-interface
	com-interface-refguid
	com-object
	com-object-destructor
	com-object-from-pointer
	com-object-initialize
	com-object-query-interface
	co-task-mem-alloc
	co-task-mem-free
	co-uninitialize
	create-instance
	define-com-implementation
	define-com-method
	find-clsid
	get-object
	guid-equal
	guid-to-string
	hresult
	hresult-equal
	interface-ref
	i-unknown
	make-factory-entry
	make-guid-from-string
	midl
	midl-default-import-paths
	:midl-file
	midl-set-import-paths
	query-interface
	query-object-interface
	refguid
	refguid-interface-name
	refiid
	register-class-factory-entry
	register-server
	release
	server-can-exit-p
	server-in-use-p
	set-automation-server-exit-delay
	set-register-server-error-reporter
	s_ok
	standard-i-unknown
	start-factories
	stop-factories
	succeeded
	unregister-server
	with-com-interface
	with-com-object
	with-query-interface
	with-temp-interface

	3 Using Automation
	3.1 Including Automation in a Lisp application
	3.1.1 Loading the modules
	3.1.2 Generating FLI definitions from COM definitions
	3.1.3 Reducing the size of the converted library

	3.2 Starting a remote Automation server
	3.3 Calling Automation methods
	3.3.1 Calling Automation methods using a type library
	3.3.2 Calling Automation methods without a type library
	3.3.3 Data conversion when calling Automation methods
	3.3.4 Using collections
	3.3.5 Using connection points
	3.3.6 Error handling

	3.4 Implementing Automation interfaces in Lisp
	3.4.1 A complete implementation of an Automation server
	3.4.2 A simple implementation of a single Automation interface
	3.4.3 Implementing collections
	3.4.4 Implementing connection points
	3.4.5 Reporting errors
	3.4.6 Registering a running object for use by other applications
	3.4.7 Automation of a CAPI application

	3.5 Examples of using Automation

	4 Automation Reference Entries
	call-dispatch-get-property
	call-dispatch-method
	call-dispatch-put-property
	com-dispatch-invoke-exception-error
	com-dispatch-invoke-exception-error-info
	com-object-dispinterface-invoke
	create-instance-with-events
	create-object
	define-automation-collection
	define-automation-component
	define-dispinterface-method
	disconnect-standard-sink
	do-collection-items
	do-connections
	find-component-tlb
	find-component-value
	get-active-object
	get-error-info
	get-i-dispatch-name
	get-i-dispatch-source-names
	i-dispatch
	interface-connect
	interface-disconnect
	invoke-dispatch-get-property
	invoke-dispatch-method
	invoke-dispatch-put-property
	lisp-variant
	make-lisp-variant
	:midl-type-library-file
	print-i-dispatch-methods
	query-simple-i-dispatch-interface
	register-active-object
	revoke-active-object
	set-error-info
	set-i-dispatch-event-handler
	set-variant
	simple-i-dispatch
	simple-i-dispatch-callback-object
	standard-automation-collection
	standard-i-connection-point-container
	standard-i-dispatch
	with-coclass
	with-dispatch-interface

	5 Tools
	5.1 The COM Implementation Browser
	5.2 The COM Object Browser
	5.3 The COM Interface Browser
	5.4 Editor extensions
	5.4.1 Inserting GUIDs
	5.4.2 Argument lists

	6 Self-contained examples
	6.1 Argument passing
	6.2 Aggregation
	6.3 OLE embedding of external components
	6.4 Building an ActiveX control
	6.5 OLE automation

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

