
COM/Automation User Guide and
Reference Manual
Version 8.0

1

Copyright and Trademarks
COM/Automation User Guide and Reference Manual

Version 8.0

December 2021

Copyright © 2021 by LispWorks Ltd.

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
LispWorks Ltd.

The information in this publication is provided for information only, is subject to change without notice, and should not be
construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or
inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only
be used or copied in accordance with the terms of that license.

LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd.

Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the
registered trademarks or trademarks of their respective holders.

The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986,
1987, 1988 Xerox Corporation.

The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom:
Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear in all copies and supporting documentation, and that the
name of M.I.T. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T. makes no representation about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty. M.I.T. disclaims all warranties with regard to this software, including all implied
warranties of merchantability and fitness. In no event shall M.I.T. be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other
tortious action, arising out of or in connection with the use or performance of this software.

LispWorks contains part of ICU software obtained from http://source.icu-project.org and which bears the following copyright
and permission notice:
ICU License - ICU 1.8.1 and later
COPYRIGHT AND PERMISSION NOTICE
Copyright © 1995-2006 International Business Machines Corporation and others. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, provided that the above copyright notice(s) and this permission notice appear in all copies of the Software and that both
the above copyright notice(s) and this permission notice appear in supporting documentation.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

2

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to promote the
sale, use or other dealings in this Software without prior written authorization of the copyright holder. All trademarks and
registered trademarks mentioned herein are the property of their respective owners.

US Government Restricted Rights
The LispWorks Software is a commercial computer software program developed at private expense and is provided with
restricted rights. The LispWorks Software may not be used, reproduced, or disclosed by the Government except as set forth
in the accompanying End User License Agreement and as provided in DFARS 227.7202-1(a), 227.7202-3(a) (1995), FAR
12.212(a)(1995), FAR 52.227-19, and/or FAR 52.227-14 Alt III, as applicable. Rights reserved under the copyright laws of
the United States.

Address Telephone Fax

LispWorks Ltd
St. John's Innovation Centre
Cowley Road
Cambridge
CB4 0WS
England

From North America:
877 759 8839 (toll-free)

From elsewhere:
+44 1223 421860

From North America:
617 812 8283

From elsewhere:
+44 870 2206189

 www.lispworks.com

Copyright and Trademarks

3

www.lispworks.com

Contents

Preface 8

1 Using COM 10

1.1 Prerequisites 10

1.2 Including COM in a Lisp application 10

1.3 The mapping from COM names to Lisp symbols 11

1.4 Initializing the COM runtime 12

1.5 Obtaining the first COM interface pointer 12

1.6 Reference counting 12

1.7 Querying for other COM interface pointers 12

1.8 Calling COM interface methods 12

1.9 Implementing COM interfaces in Lisp 18

1.10 Calling COM object methods from Lisp 24

2 COM Reference Entries 27

add-ref 27

automation-server-command-line-action 28

automation-server-main 28

automation-server-top-loop 30

call-com-interface 31

call-com-object 32

check-hresult 34

co-create-guid 34

co-initialize 35

com-error 36

com-interface 37

com-interface-refguid 38

com-object 38

com-object-destructor 39

com-object-from-pointer 40

com-object-initialize 41

com-object-query-interface 41

co-task-mem-alloc 42

co-task-mem-free 43

co-uninitialize 44

create-instance 45

define-com-implementation 46

4

define-com-method 48

find-clsid 49

get-object 50

guid-equal 51

guid-to-string 52

hresult 53

hresult-equal 53

interface-ref 54

i-unknown 55

make-factory-entry 55

make-guid-from-string 56

midl 57

midl-default-import-paths 59

:midl-file 60

midl-set-import-paths 60

query-interface 61

query-object-interface 62

refguid 63

refguid-interface-name 63

refiid 64

register-class-factory-entry 65

register-server 66

release 67

server-can-exit-p 67

server-in-use-p 67

set-automation-server-exit-delay 68

set-register-server-error-reporter 69

s_ok 70

standard-i-unknown 71

start-factories 72

stop-factories 72

succeeded 73

unregister-server 74

with-com-interface 75

with-com-object 76

with-query-interface 77

with-temp-interface 78

3 Using Automation 80

3.1 Including Automation in a Lisp application 80

3.2 Starting a remote Automation server 81

3.3 Calling Automation methods 81

3.4 Implementing Automation interfaces in Lisp 84

3.5 Examples of using Automation 86

Contents

5

4 Automation Reference Entries 87

call-dispatch-get-property 87

call-dispatch-method 88

call-dispatch-put-property 89

com-dispatch-invoke-exception-error 90

com-dispatch-invoke-exception-error-info 91

com-object-dispinterface-invoke 92

create-instance-with-events 93

create-object 94

define-automation-collection 95

define-automation-component 96

define-dispinterface-method 98

disconnect-standard-sink 100

do-collection-items 100

do-connections 101

find-component-tlb 102

find-component-value 103

get-active-object 105

get-error-info 106

get-i-dispatch-name 107

get-i-dispatch-source-names 108

i-dispatch 108

interface-connect 109

interface-disconnect 110

invoke-dispatch-get-property 111

invoke-dispatch-method 112

invoke-dispatch-put-property 113

lisp-variant 114

make-lisp-variant 115

:midl-type-library-file 116

print-i-dispatch-methods 117

query-simple-i-dispatch-interface 118

register-active-object 119

revoke-active-object 120

set-error-info 120

set-i-dispatch-event-handler 121

set-variant 123

simple-i-dispatch 125

simple-i-dispatch-callback-object 126

standard-automation-collection 127

standard-i-connection-point-container 128

standard-i-dispatch 129

with-coclass 130

Contents

6

with-dispatch-interface 131

5 Tools 133

5.1 The COM Implementation Browser 133

5.2 The COM Object Browser 135

5.3 The COM Interface Browser 135

5.4 Editor extensions 136

6 Self-contained examples 137

6.1 Argument passing 137

6.2 Aggregation 137

6.3 OLE embedding of external components 137

6.4 Building an ActiveX control 138

6.5 OLE automation 138

Index

Contents

7

Preface

This manual documents the LispWorks COM/Automation API, which provides a toolkit for using Microsoft COM and
Automation with Common Lisp.

For details of using OLE and ActiveX controls with the CAPI, see the class capi:ole-control-pane in the CAPI User
Guide and Reference Manual.

This preface contains information you need when using the rest of the this manual. It discusses the purpose of this manual,
the typographical conventions used, and gives a brief description of the rest of the contents.

Assumptions

The manual assumes that you are familiar with:

• LispWorks.

• The LispWorks FLI.

• Common Lisp and CLOS, the Common Lisp Object System.

• The functionality of Microsoft COM/Automation.

Unless otherwise stated, examples given in this document assume that the current package has COM on its package-use-list.

Conventions used in the manual

Throughout this manual, certain typographical conventions have been adopted to aid readability.

Text which refers to Lisp forms is printed like this. Variables and values described in the reference sections are printed
like-this.

Entries in the reference sections are listed alphabetically and each entry is headed by the symbol name and type, followed by
a number of fields providing further details. These fields consist of a subset of the following: "Summary", "Signature",
"Method signature", "Superclasses", "Subclasses", "Slots", "Accessors", "Readers", "Compatibility note", "Description",
"Notes", "Examples", and "See also".

Entries with a long "Description" section usually have as their first field a short "Summary" providing a quick overview of the
purpose of the symbol being described.

The "Signature" section provides details of the arguments taken by the functions and macros and values returned, separated
by the => sign. The top level of parentheses is omitted, but parentheses used for destructuring in macros are included
explicitly. Optional items in the syntax of macros are denoted using square brackets [like this]. Repeated items have an
asterisk suffix like this*.

For classes, only direct sub- and superclasses are detailed in the "Subclasses" and "Superclasses" sections of each entry.

Examples show fragments of code and sometimes the results of evaluating them.

Finally, the "See also" section provides a reference to other related symbols.

Please let us know if you find any mistakes in the LispWorks documentation, or if you have any suggestions for
improvements.

8

Example files

This manual often refers to example files in the LispWorks library via a Lisp form like this:

(example-edit-file "com/automation/events/ie-events")

These examples are files in your LispWorks installation under lib/8-0-0-0/examples/. You can simply evaluate the given form
to view the example file.

Example files contain instructions about how to use them at the start of the file.

The examples files are in a read-only directory and therefore you should compile them inside the IDE (by the Editor
command Compile Buffer or the toolbar button or by choosing Buffer > Compile from the context menu), so it does not try
to write a fasl file.

If you want to manipulate an example file or compile it on the disk rather than in the IDE, then you need first to copy the file
elsewhere (most easily by using the Editor command Write File or by choosing File > Save As from the context menu).

A Description of the Contents

The manual is divided into four sections, relating to COM, Automation, graphical tools and example files respectively. The
COM and Automation sections each contain a user guide and a reference chapter.

1 Using COM introduces the principles behind the LispWorks COM API and describes how to use it to call COM methods
and implement COM servers.

2 COM Reference Entries provides a detailed description of every function, macro, variable and type in the LispWorks
COM API.

3 Using Automation introduces the LispWorks Automation API and describes how to use it to call Automation methods and
implement Automation servers.

4 Automation Reference Entries provides a detailed description of every function, macro, variable and type in the
LispWorks Automation API.

5 Tools describes some tools which are available in the LispWorks IDE to help with debugging applications using
COM/Automation. Please note that your windows may look different from the illustrations shown. This is because some
details are controlled by the theme and version of Microsoft Windows, not by LispWorks itself.

6 Self-contained examples lists the example files which are relevant to the content of this manual and are available in the
LispWorks library.

Preface

9

1 Using COM

1.1 Prerequisites

Because COM is a low level binary API, many features of the LispWorks COM API depend on the LispWorks FLI. See the
Foreign Language Interface User Guide and Reference Manual for details. You should also have a working knowledge of
Microsoft COM.

To compile IDL files, you will need Microsoft® Visual C++® installed.

1.2 Including COM in a Lisp application

This section describes how to load COM and generate any FLI definitions needed to use it, and how to build a COM DLL.

1.2.1 Loading the modules

Before using any of the LispWorks COM API, it must be loaded by evaluating:

(require "com")

1.2.2 Generating FLI definitions from COM definitions

COM definitions are typically described in one of two ways, either as IDL files, which allow the full range of COM
definitions or as type libraries, which are generally only used for Automation. Before you can use any COM functionality in
a Lisp application, you need to convert the COM definitions into Lisp FLI definitions and various supporting data structures.
This corresponds to using midl.exe or the MFC Class Wizard when writing C/C++ COM code.

To convert an IDL file, either compile it using the function midl or add it to a system definition with the option :type

:midl-file and compile and load the system.

Note: types like IDispatch must declared before they are used, for this conversion to work.

Conversion of type libraries is covered in 3 Using Automation.

1.2.3 Standard IDL files

Certain standard IDL files have already been converted to FLI definitions as part of the COM API modules. These are listed
below and should not be converted again.

10

Pre converted IDL files

IDL file Part of Lisp module

UNKNWN.IDL com

WTYPES.IDL com

OAIDL.IDL automation

OLEAUTO.IDL automation

OCIDL.IDL automation

1.2.4 Making a COM DLL with LispWorks

You can make a DLL with LispWorks by using deliver (or save-image) with the :dll-exports keyword. The value of
the :dll-exports keyword can include the keyword :com, which exports (with appropriate definitions) the standard four
symbols that a COM DLL needs:

DllGetClassObject
DllRegisterServer
DllUnregisterServer
DllCanUnloadNow

If no other symbols are exported, the value of :dll-exports can be the keyword :com, which means the same as the list
(:com). See the Delivery User Guide for more details.

You can use the function set-register-server-error-reporter to report when calls to DllRegisterServer or
DllUnregisterServer fail.

1.3 The mapping from COM names to Lisp symbols

COM names are typically a mixture of upper and lower case letters and digits, with words capitalized. These names are
mapped to Lisp symbols, adding hyphens to match typical Lisp conventions for word boundaries. These examples illustrate
some conversions:

Examples of COM names and their corresponding Lisp names

COM name Lisp name

IUnknown i-unknown

pStr p-str

DWORD dword

IEnumVARIANT i-enum-variant

In addition, COM methods with the propget attribute have a get- prefix added to their names and COM methods with the
propput or propputref attributes have a put- prefix added to their names. Note that these prefixes are not used when
calling methods via Automation.

To see the mapping for a particular file, look at the output while loading a converted IDL file or type library.

1 Using COM

11

1.4 Initializing the COM runtime

Before you can interact with COM, you must initialize the COM runtime by calling co-initialize. This must be called in
every thread that uses COM. LispWorks takes care of cleaning up the COM runtime when a thread exits, but you can also do
this explicitly using co-uninitialize.

1.5 Obtaining the first COM interface pointer

All interaction with a remote COM server is done via its interface pointers and the most common way to obtain the first
interface pointer is using the function create-instance. This takes the CLSID of the server and returns an interface
pointer for the i-unknown interface unless another interface name is specified. Note that you must initialize the COM
runtime before calling create-instance (see 1.4 Initializing the COM runtime).

For example, the following will create an instance of Microsoft Word:

(create-instance "000209FF-0000-0000-C000-000000000046")

1.6 Reference counting

The lifetime of each COM interface pointer is controlled by its reference count. When a new reference to a COM interface
pointer is made, the function add-ref should be called to increment its reference count. When a reference is removed, the
function release should be called to decrement it again. The macro with-temp-interface can be useful when working
with temporary interface pointers to ensure that they are released when a body of code exits in any way.

Refer to standard COM texts for more details of the reference counting rules. The LispWorks COM API does not perform
any automatic reference counting (sometimes called smart pointers in C++).

1.7 Querying for other COM interface pointers

An interface pointer can be queried to discover if the underlying object supports other interfaces. This is done using the
function query-interface, passing the interface pointer and the refiid of the interface to query. A refiid is either a
foreign pointer to a GUID structure or a symbol naming a COM interface as described in 1.3 The mapping from COM
names to Lisp symbols.

For example, the function below will find the COM interface pointer for its i-dispatch interface:

(defun find-dispatch-pointer (ptr)
 (query-interface ptr 'i-dispatch))

The macro with-query-interface can be used to query an interface pointer and automatically release it again on exit
from a body of code.

1.8 Calling COM interface methods

The macros call-com-interface and with-com-interface are used to call COM methods. To call a COM method,
you need to specify the interface name, the method name, a COM interface pointer and suitable arguments. The interface and
method names are given as symbols named as in 1.3 The mapping from COM names to Lisp symbols and the COM
interface pointer is a foreign pointer of type com-interface. In both macros, the args and values are as specified in the
1.8.1 Data conversion when calling COM methods.

The with-com-interface macro is useful when several methods are being called with the same COM interface pointer,
because it establishes a local macro that takes just the method name and arguments.

1 Using COM

12

http://www.lispworks.com/documentation/HyperSpec/Body/t_symbol.htm

For example, the following are equivalent ways of calling the move and resize methods of a COM interface pointer
window-ptr for the i-window interface:

(progn
 (call-com-interface (window-ptr i-window move) 10 10)
 (call-com-interface (window-ptr i-window resize) 100 100))

(with-com-interface (call-window-ptr i-window) window-ptr
 (call-window-ptr move 10 10)
 (call-window-ptr resize 100 100))

1.8.1 Data conversion when calling COM methods

All IDL definitions map onto FLI definitions, mirroring the mapping that midl.exe does for C/C++. However, IDL
provides some additional type information that C/C++ lacks (for instance the string attribute), so there are some additional
conversions that Lisp performs when it can.

The COM API uses the information from the IDL to convert data between FLI types and Lisp types where appropriate for
arguments and return values of COM method calls. In particular:

• Primitive integer types are represented as Lisp integers.

• Primitive char types are represented as Lisp characters.

• Primitive float types are represented as Lisp float types.

• COM interface pointers are FLI objects represented as objects of type com-interface, which supports type checking
of the interface name.

• Except as detailed below, all other COM types are represented as their equivalent FLI types. This includes other pointer
types and structs.

In COM, all parameters have a direction which can be either in, out or both in and out (referred to as in-out here). Arguments
and values for client-side COM method calls reflect the direction as described in the following sections. For a complete
version of the example code, see the file:

(example-edit-file "com/manual/args/args-calling")

1.8.1.1 In parameters

In parameters are passed as positional arguments in the order they are specified and do not affect the return values.

• A parameter with the string attribute can be passed either as a foreign pointer or as a Lisp string (converted to a foreign
string with dynamic extent for the duration of the call).

• A parameter whose type is either an array type or a pointer type with a size_is attribute can be passed either as a
foreign pointer or, if the element type is not a foreign aggregate type, as a Lisp array of the appropriate rank (converted
to a foreign array with dynamic extent for the duration of the call).

• Otherwise, the Lisp value is converted using the FLI according to the mapping of types defined above.

For example, given the IDL:

import "unknwn.idl";

[object,
 uuid(E37A70A0-EFC9-11D5-BF02-000347024BE1)

1 Using COM

13

]
interface IArgumentExamples : IUnknown
{
 typedef [string] char *argString;

 HRESULT inMethod([in] int inInt,
 [in] argString inString,
 [in] int inArraySize,
 [in, size_is(inArraySize)] int *inArray);
}

the method in-method can be called with Lisp objects like this:

(let ((array #(7 6)))
 (call-com-interface (arg-example i-argument-examples
 in-method)
 42
 "the answer"
 (length array)
 array))

or with foreign pointers like this:

(fli:with-dynamic-foreign-objects ()
 (let* ((farray-size 2)
 (farray (fli:allocate-dynamic-foreign-object
 :type :int
 :nelems farray-size
 :initial-contents '(7 6))))
 (fli:with-foreign-string (fstring elt-count byte-count)
 "the answer"
 (declare (ignore elt-count byte-count))
 (call-com-interface (arg-example i-argument-examples
 in-method)
 42
 fstring
 farray-size
 farray))))

Note that the int arguments are always passed as Lisp integer because int is a primitive type.

1.8.1.2 Out parameters

Out parameters are always of type pointer in COM and never appear as positional arguments in the Lisp call. Instead, there is
a keyword argument named after the parameter, which can be used to pass an object to be modified by the method. In
addition, each out parameter generates a return value, which will be eq to the value of keyword argument if it was passed and
otherwise depends on the type of the parameter as described below.

• If the value of the keyword argument is a foreign pointer then it is passed directly to the method and is expected to point
to an object of the appropriate size to contain the returned data.

• If the value of the keyword argument is nil then a null pointer is passed to the method.

• Except where specified below, if the keyword argument is omitted, a foreign object with dynamic extent is created to
contain the value and a pointer to this object is passed to the method. On return, the contents maybe be converted back to
a Lisp object as specified.

• A parameter with the string attribute is converted to a Lisp string if the keyword is not passed. If the keyword is
passed, the memory for the string might need to be freed by co-task-mem-free if nothing else does this.

1 Using COM

14

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

• A parameter whose type is either an array type or a pointer type with a size_is attribute will be converted to a Lisp
array if the keyword is not passed and the element type is not a foreign aggregate type. If the keyword argument is not
passed then a new Lisp array is made. If the value of the keyword argument is a Lisp array then that is filled.

• For a parameter whose type is a foreign aggregate type, such as struct, the keyword argument must be passed and its
value must be as a foreign pointer. This pointer is passed directly to the method.

• For a parameter with the iid_is attribute, a com-interface pointer is returned using the indicated iid parameter to
control the interface name.

• Otherwise, the dynamic extent foreign pointer is dereferenced to obtain the Lisp return value, as if by calling
fli:dereference.

For example, given the IDL:

import "unknwn.idl";

[object,
 uuid(E37A70A0-EFC9-11D5-BF02-000347024BE1)
]
interface IArgumentExamples : IUnknown
{
 typedef [string] char *argString;

 HRESULT outMethod([out] int *outInt,
 [out] argString *outString,
 [in] int outArraySize,
 [out, size_is(outArraySize)] int *outArray);
}

the method out-method can return Lisp objects like this:

(multiple-value-bind (hres int string array)
 (call-com-interface (arg-example i-argument-examples
 out-method)
 8)
 ;; int is of type integer
 ;; string is of type string
 ;; array is of type array
)

or fill an existing array like this:

(let ((out-array (make-array 5)))
 (multiple-value-bind (hres int string array)
 (call-com-interface (arg-example i-argument-examples
 out-method)
 (length out-array)
 :out-array out-array)
 ;; int is of type integer
 ;; string is of type string
 ;; array is eq to out-array and was filled
))

or set the contents of foreign memory like this:

(fli:with-dynamic-foreign-objects ((out-int :int)
 (out-string WIN32:LPSTR))
 (let* ((out-farray-size 5)
 (out-farray (fli:allocate-dynamic-foreign-object
 :type :int
 :nelems out-farray-size)))

1 Using COM

15

 (multiple-value-bind (hres int string array)
 (call-com-interface (arg-example i-argument-examples
 out-method)
 out-farray-size
 :out-int out-int
 :out-string out-string
 :out-array out-farray)
 ;; Each foreign pointer contains the method's results
 ;; int is the foreign pointer out-int
 ;; string is the foreign pointer out-string
 ;; array is the foreign pointer out-array
 ;; Note that the string must be freed as follows:
 (co-task-mem-free (fli:dereference out-string)))))

1.8.1.3 In-out parameters

In-out parameters are always of type pointer in COM and are handled as a mixture of in and out. In particular, they have both
a positional parameter and a keyword parameter, which can be used to control the value passed and conversion of the value
returned respectively. Each in-out parameter generates a return value, which will be eq to the value of the keyword argument
if it was passed and otherwise depends on the type of the parameter as below.

• As for out parameters, if the value of the keyword argument is a foreign pointer then it is passed directly to the method
and is expected to be of the appropriate size to contain the returned data. If the value of the keyword argument is nil
then a null pointer is passed to the COM call. The positional argument should be nil is these cases. If the keyword
argument not passed, a foreign object with dynamic extent is created to contain the value, initialized with data from the
positional argument before calling the method and possibly converted back to a Lisp value on return.

• For a parameter with the string attribute, the positional argument is handled as for the in argument string case and
the keyword argument is handled as for the out argument string case. The functions co-task-mem-alloc and
co-task-mem-free should be used to manage the memory for the string itself.

• For a parameter whose type is a non-aggregate array type or a pointer to a non-aggregate type that has the size_is
attribute, the positional argument is handled as for the in argument array case and the keyword argument is handled as for
the out argument array case. To update an existing array, pass it as both the positional and keyword argument values.

• For a parameter whose type is a foreign aggregate type, the keyword argument must be passed and its value must be a
foreign pointer. This pointer is passed directly to the method and the positional argument should be nil.

• Otherwise, a foreign object with dynamic extent is created, set to contain the value of positional argument before calling
the method and dereferenced on return to obtain the Lisp return value, as if by calling fli:dereference.

For example, given the IDL:

import "unknwn.idl";

[object,
 uuid(E37A70A0-EFC9-11D5-BF02-000347024BE1)
]
interface IArgumentExamples : IUnknown
{
 typedef [string] char *argString;

 HRESULT inoutMethod([in, out] int *inoutInt,
 [in, out] argString *inoutString,
 [in] int inoutArraySize,
 [in, out, size_is(inoutArraySize)]
 int *inoutArray);
}

the method inout-method can receive and return Lisp objects like this:

1 Using COM

16

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm

(let ((in-array #(7 6)))
 (multiple-value-bind (hres int string array)
 (call-com-interface (arg-example i-argument-examples
 inout-method)
 42
 "the answer"
 (length in-array)
 in-array)
 ;; int is of type integer
 ;; string is of type string
 ;; array is of type array
))

or fill an existing array like this:

(let* ((in-array #(7 6))
 (out-array (make-array (length in-array))))
 (multiple-value-bind (hres int string array)
 (call-com-interface (arg-example i-argument-examples
 inout-method)
 42
 "the answer"
 (length in-array)
 in-array
 :inout-array out-array)
 ;; int is of type integer
 ;; string is of type string
 ;; array is eq to out-array, which was filled
))

or update an existing array like this:

(let* ((inout-array #(7 6)))
 (multiple-value-bind (hres int string array)
 (call-com-interface (arg-example i-argument-examples
 inout-method)
 42
 "the answer"
 (length inout-array)
 inout-array
 :inout-array inout-array)
 ;; int is of type integer
 ;; string is of type string
 ;; array is eq to inout-array, which was updated
))

1.8.2 Error handling

Most COM methods return an integer hresult to indicate success or failure, which can be checked using succeeded,
s_ok, hresult-equal or check-hresult.

In addition, after calling a COM method that provides extended error information, you can call the function
get-error-info to obtain more details of any error that occurred. This is supplied with a list of fields, which should be
keywords specifying the parts of the error information to obtain.

For example, in the session below, tt is a COM interface pointer for the i-test-suite-1 interface:

CL-USER 186 > (call-com-interface (tt i-test-suite-1 fx))

"in fx" ;; implementation running
-2147352567 ;; the error code DISP_E_EXCEPTION

1 Using COM

17

CL-USER 187 > (get-error-info :fields '(:description
 :source))
("foo" "fx")

CL-USER 188 >

1.9 Implementing COM interfaces in Lisp

Lisp implementations of COM interfaces are created by defining an appropriate class and then defining COM methods for all
the interfaces implemented by this class.

The class can inherit from standard-i-unknown to obtain an implementation of the i-unknown interface. This superclass
provides reference counting and an implementation of the query-interface method that generates COM interface
pointers for the interfaces specified in the class definition. It also supports aggregation.

There are two important things to note about COM classes and methods:

• The implementation objects and COM interface pointers are different things: an interface pointer must be queried from
the implementation object explicitly and the function com-object-from-pointer can be used to obtain an object
from an interface pointer. This is show in The relationship between an Lisp object and its COM interface pointers
below.

• COM methods are not defined with defmethod because they have very specific conventions for passing arguments and
returning values that are different from those of Lisp.

The relationship between an Lisp object and its COM interface pointers

1.9.1 Steps required to implement COM interfaces

To implement a COM interface in Lisp, you need the following:

1. Some COM interface definitions, converted to Lisp as specified in 1.2.2 Generating FLI definitions from COM
definitions.

2. A COM object class defined with the macro define-com-implementation, specifying the interface(s) to implement.

3. Implementations of the methods using define-com-method.

4. If the objects are to be created by another process, a description of the class factories created with
make-factory-entry and registered with register-class-factory-entry.

5. Initialization code to call co-initialize. It should also call start-factories in a thread that will be processing
Windows messages (for instance a CAPI thread) if you have registered class factories.

1 Using COM

18

http://www.lispworks.com/documentation/HyperSpec/Body/m_defmet.htm

1.9.2 The lifecycle of a COM object

Since COM objects can be accessed from outside the Lisp world, possibly from a different application, their lifetimes are
controlled more carefully than those of normal Lisp objects. The diagram below shows the lifecycle of a typical COM object.

The lifecycle of a COM object

Each COM object goes through the following stages.

1. CLOS object initialization.

In the first stage, the object is created by a call to make-instance, either by a class factory (see 1.9.3 Class factories)
or explicitly by the application. The normal CLOS initialization mechanisms such as initialize-instance can be
used to initialize the object. During this stage, the object is known only to Lisp and can be garbage collected if the next
stage is not reached.

2. COM initialization.

At some point, the server makes the first COM interface pointer for the object by invoking the COM method
query-interface, either automatically in the class factory or explicitly using by using macros such as
query-object-interface or call-com-object. When this happens, the object's reference count will become 1
and the object will be stored in the COM runtime system. In addition, the generic function com-object-initialize

is called to allow class-specific COM initialization to be done.

3. COM usage.

In this stage, the object is used via its COM interface pointers by a client or directly by Lisp code in the server. Several
COM interface pointers might be created and each one contributes to the overall reference count of the object.

4. COM destruction.

This stage is entered when the reference count is decremented to zero, which is triggered by all the COM interface
pointers being released by their clients. The generic function com-object-destructor is called to allow class-
specific COM cleanups and the object is removed from the COM runtime system. From now on, the object is not known
to COM world.

5. Garbage collection.

The final stage of an object's lifecycle is the normal Lisp garbage collection process, which removes the object from

1 Using COM

19

http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_init_i.htm

memory when there are no more references to it.

1.9.3 Class factories

The LispWorks COM runtime provides an implementation of the class factory protocol, which will construct COM objects
on demand. The class factory implementation supports aggregation when passed an outer unknown pointer.

Class factories are described by objects created with make-factory-entry and must be registered with the COM runtime
using register-class-factory-entry. The function start-factories should be called when the application
initializes to start all the registered class factories.

When using the Automation API described in 3 Using Automation and 4 Automation Reference Entries, class factories are
created and registered automatically by the define-automation-component macro if appropriate.

1.9.4 Unimplemented methods

If the class does not define all the COM methods for the interfaces it implements, then some of those methods may be
inherited from superclasses (see 1.9.5 Inheritance). If there is no direct or inherited definition of a method, then a default
method that returns E_NOTIMPL will be provided automatically. The default method also fills all out arguments with null
bytes and ignores all in and in-out arguments except those needed to compute the size of arrays for filling out arguments.

1.9.5 Inheritance

A COM object class will inherit COM method implementations from its superclasses if no direct method is defined.
However, unlike Lisp methods where an effective method is computed from the set of applicable methods for each generic
function, COM methods are always inherited in groups via their defining interface. This is because the interface is used to
call a COM method, not the COM object.

Specifically, each method is inherited from the first class in the class precedence list that implements the interface where the
method is declared. No attempt is made to search further down the class precedence list if this class is using the
unimplemented method definition described in 1.9.4 Unimplemented methods.

1.9.5.1 An example of multiple inheritance

The inheritance rules may lead to unexpected results in the case of multiple inheritance. For example, consider the following
IDL:

// IDL definition of IFoo
import "unknwn.idl";

[uuid(7D9EB760-E4E5-11D5-BF02-000347024BE1)]
interface IFoo : IUnknown
{
 HRESULT meth1();
 HRESULT meth2();
 HRESULT meth3();
}

and these three (partial) implementations of the interface i-foo.

1. An implementation with no definition of meth2:

(define-com-implementation foo-impl-1 ()
 ()
 (:interfaces i-foo))

1 Using COM

20

(define-com-method meth1 ((this foo-impl-1))
 s_ok)

(define-com-method meth3 ((this foo-impl-1))
 s_ok)

2. An implementation with no definition except meth2:

(define-com-implementation foo-impl-2 ()
 ()
 (:interfaces i-foo))

(define-com-method meth2 ((this foo-impl-2))
 s_ok)

3. A combined implementation, inheriting from steps 1 and 2.

(define-com-implementation foo-impl-12 (foo-impl-1
 foo-impl-2)
 ()
 (:interfaces i-foo))

In step 3, the class foo-impl-12 implements the interface i-foo, but inherits all the i-foo method definitions from
foo-impl-1, which is the first class in the class precedence list that implements that interface. These method definitions
include the "unimplemented" definition of meth2 in foo-impl-1, which hides the definition in the other superclass
foo-impl-2. As a result, when the following form is evaluated with p-foo created from an instance of foo-impl-12:

(let ((object (make-instance 'foo-impl-12)))
 (with-temp-interface (p-foo)
 (nth-value 1 (query-object-interface
 foo-impl-12
 object
 'i-foo))
 (with-com-interface (call-p-foo i-foo) p-foo
 (values (call-p-foo meth1)
 (call-p-foo meth2)
 (call-p-foo meth3)))))

the three values are S_OK, E_NOTIMPL and S_OK.

1.9.5.2 A second example of multiple inheritance

Here is a further extension to the example in 1.9.5.1 An example of multiple inheritance, with an additional interface
i-foo-ex.that inherits from i-foo as in the following IDL:

[uuid(7D9EB761-E4E5-11D5-BF02-000347024BE1)]
interface IFooEx : IFoo
{
 HRESULT meth4();
}

This interface has the following additional implementations:

1. An implementation defining all the methods in i-foo-ex:

(define-com-implementation foo-ex-impl-1 ()
 ()
 (:interfaces i-foo-ex))

1 Using COM

21

(define-com-method meth1 ((this foo-ex-impl-1))
 s_ok)

(define-com-method meth2 ((this foo-ex-impl-1))
 s_ok)

(define-com-method meth3 ((this foo-ex-impl-1))
 s_ok)

(define-com-method meth4 ((this foo-ex-impl-1))
 s_ok)

2. A combined implementation, inheriting from step 3 from 1.9.5.1 An example of multiple inheritance and step 1 above.

(define-com-implementation foo-ex-impl-2 (foo-impl-12
 foo-ex-impl-1)
 ()
 (:interfaces i-foo-ex))

In step 2, the class foo-ex-impl-2 implements the interface i-foo-ex and is a subclass of foo-ex-impl-1, which
implements i-foo. When the following form is evaluated with p-foo-ex created from an instance of foo-ex-impl-2:

(let ((object (make-instance 'foo-ex-impl-2)))
 (with-temp-interface (p-foo-ex)
 (nth-value 1 (query-object-interface
 foo-ex-impl-2
 object
 'i-foo-ex))
 (with-com-interface (call-p-foo i-foo-ex) p-foo-ex
 (values (call-p-foo meth1)
 (call-p-foo meth2)
 (call-p-foo meth3)
 (call-p-foo meth4)))))

the four values are S_OK, E_NOTIMPL, S_OK and S_OK.

Note that, even though foo-ex-impl-2 only explicitly implements i-foo-ex, the methods meth1, meth2 and meth3

were declared in its parent interface i-foo. This means that their definitions (including the "unimplemented" definition of
meth2) are inherited from foo-impl (via foo-impl-12), because foo-impl-12 is before foo-ex-impl-2 in the class
precedence list of foo-ex-impl-2. Only meth4, which is declared in i-foo-ex, is inherited from foo-ex-impl-1.

1.9.6 Data conversion in define-com-method

All IDL definitions map onto FLI definitions, mirroring the mapping that midl.exe does for C/C++. However, IDL
provides some additional type information that C/C++ lacks (for instance the string attribute), so there are some additional
conversions that Lisp performs when it can. For a complete example of data conversion, see the file:

(example-edit-file "com/manual/args/args-impl")

1.9.6.1 FLI types

The COM API uses the information from the IDL to convert data between FLI types and Lisp types where appropriate for
arguments and return values of COM method definitions. In particular:

• Primitive integer types are represented as Lisp integers.

• Primitive char types are represented as Lisp characters.

1 Using COM

22

• Primitive float types are represented as Lisp float types.

• COM interface pointers are represented as objects of type
com-interface, which supports type checking of the interface name.

• All other types are represented as their equivalent FLI types. This includes other pointer types and structs.

Each argument is the IDL has a corresponding argument in the
define-com-method form. In addition, each argument has a pass-style which specifies whether additional conversions are
performed.

If the pass-style of a parameter is :foreign, then the value will be exactly what the FLI would provide, i.e. foreign pointers
for strings and for all out or in-out parameters (which are always pointers in the IDL).

If the pass-style of a parameter is :lisp, then the conversions described in the following sections will be done.

If there is a parameter marked with the vararg attribute then the value must be an array.

1.9.6.2 In parameters

For in parameters:

• A parameter with the string attribute will be converted to a Lisp string. The string should not be destructively modified
by the body.

• A parameter of COM type BSTR will be converted to a Lisp string. The string should not be destructively modified by
the body.

• A parameter of COM type VARIANT* will be converted to a Lisp object according to the VT code in the variant (see
Automation types, VT codes and their corresponding Lisp types).

• A parameter of COM type SAFEARRAY(type) or SAFEARRAY(type)* will be converted to a Lisp array. The elements of
type type are converted as in Automation types, VT codes and their corresponding Lisp types.

• A parameter of COM type VARIANT_BOOL will be converted to nil (for zero) or t (for any other value). Note that a
parameter of type BOOL will be converted to an integer because type libraries provide no way to distinguish this case
from the primitive integer type.

• A parameter whose type is an array type or a pointer type with a size_is attribute will be converted to a temporary Lisp
array. The Lisp array might have dynamic extent.

• Otherwise, the value is converted to a Lisp value using the FLI according to the mapping of types defined in 1.9.6.1 FLI
types.

1.9.6.3 Out parameters

For out parameters:

• A parameter whose type is an array type or a pointer type with a size_is attribute will be converted to a Lisp array of
the appropriate size allocated for the dynamic extent of the body forms. After the body has been evaluated, the contents
of the array will be copied into the foreign array that the caller has supplied.

• For other types, the parameter will be nil initially and the body should use setq to set it to the value to be returned.

In the latter case, the value will be converted to a foreign object after the body has been evaluated. The following conversions
are done:

• For a parameter with the string attribute, a Lisp string will be converted to a foreign string using CoTaskMemAlloc().

1 Using COM

23

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/s_setq.htm

• For a parameter of COM type BSTR*, a Lisp string will be converted to a foreign string using SysAllocString().

• For a parameter of COM type VARIANT*, the value can be any Lisp value, with the VT code being set according to the
Lisp type (see Automation types, VT codes and their corresponding Lisp types). If exact control is required, use the
pass-style :foreign and the function set-variant.

• For a parameter of COM type SAFEARRAY(type)*, the value can be either a foreign pointer to an appropriate
SAFEARRAY or a Lisp array. In the latter case, a new SAFEARRAY is created which contains the elements of the Lisp
array converted as in Automation types, VT codes and their corresponding Lisp types.

• For a parameter of COM type VARIANT_BOOL*, the value can be a generalized boolean.

• Otherwise, the Lisp value will be converted using the FLI according to the mapping of types defined in 1.9.6.1 FLI
types.

1.9.6.4 In-out parameters

For in-out parameters:

• A parameter whose type is an array type or a pointer type with a size_is attribute will be converted to a Lisp array of
the appropriate size allocated for the dynamic extent of the body forms. The initial contents of the Lisp array will be
taken from the foreign array which was passed by the caller. After the body has been evaluated, the contents of the Lisp
array will be copied back into the foreign array.

• For a parameter with the string attribute, the parameter will be the converted to a Lisp string. To return a different
string, the parameter should be set to another (non eq) Lisp string, which will cause the original foreign string to be
freed with CoTaskMemFree() and a new foreign string allocated with CoTaskMemAlloc(). The initial string should
not be destructively modified by the body.

• For a parameter of COM type BSTR*, the parameter will be the converted to a Lisp string. To return a different string,
the parameter should be set to another (non eq) Lisp string, which will cause the original foreign string to be freed with
SysFreeString() and a new foreign string allocated with SysAllocString().

• For parameters of COM type VARIANT*, the parameter will be converted to a Lisp object (see Automation types, VT
codes and their corresponding Lisp types). To return a different value, the parameter should be set to another (non eq)
value, which will be placed back into the VARIANT with the VT code being set according to the Lisp type (see
Automation types, VT codes and their corresponding Lisp types). If exact control of the VT code is required, use the
pass-style :foreign and the function set-variant.

• For parameters of COM type SAFEARRAY(type)*, the parameter will be converted to a Lisp array. The elements of type
type are converted as in Automation types, VT codes and their corresponding Lisp types. To return a different value,
the parameter should be set to another (non eq) value, which can be either a foreign pointer to an appropriate
SAFEARRAY or a Lisp array. In the latter case, a new SAFEARRAY is created which contains the elements of the Lisp
array converted as in Automation types, VT codes and their corresponding Lisp types.

• For parameter of COM type VARIANT_BOOL*, the parameter will be nil or t according to the initial value (zero or non
zero). To return a different value, set the parameter to a new value, which can be a generalized boolean.

1.10 Calling COM object methods from Lisp

Within the implementation of a COM object, the macros call-com-object and with-com-object can be used to call
COM methods directly for a COM object without using an interface pointer. To call a COM method, you need to specify the
class name, the method name, the interface name if the method name is not unique, a COM object and suitable arguments.
The class name is a symbol as used in the define-com-implementation form and can be a superclass of the actual object
class. The method and interface names are given as symbols named as in 1.3 The mapping from COM names to Lisp
symbols. and the arguments and values are as specified below in 1.10.1 Data conversion when calling COM object

1 Using COM

24

http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_eq.htm

methods. These macros should be used with caution because they assume that the caller knows the implementation's pass-
style for all the arguments.

The with-com-object macro is useful when several methods are being called with the same COM object, because it
establishes a local macro that takes just the method name and arguments.

1.10.1 Data conversion when calling COM object methods

No explicit argument or return value conversion is done by call-com-object or with-com-object. As a result, every
argument must be passed as a positional argument and must be of the type expected by the method's implementation The
allowable types are described in the following sections.

1.10.1.1 In parameters

For in parameters:

• For a parameter with the string attribute, the value can be a Lisp string.

• For a parameter of COM type BSTR, the value can be a Lisp string.

• For a parameter whose type is an array type or a pointer type with a size_is attribute, the value can be a Lisp array of
the appropriate rank and dimension.

• Otherwise, the value should match what the FLI would generate for the parameter's type.

1.10.1.2 Out parameters

For out parameters:

• If nil is passed, the value from the method is returned without any conversion.

• For a parameter whose type is an array type or a pointer type with a size_is attribute, the value can be a Lisp array.
The contents of the array will be modified by the method and the array will be returned as a value.

• Otherwise, the value should be a foreign pointer of the type that the FLI would generate for the parameter's type. The
foreign pointer will be returned as a value.

1.10.1.3 In-out parameters

For in-out parameters:

• For a parameter whose type is an array type or a pointer type with a size_is attribute, the value can be a Lisp array.
The contents of the array will be modified by the method and the array will be returned as a value.

• For a parameter with the string attribute, the parameter can be a Lisp string. The value of the parameter at the end of
the body will be returned as a value.

• For a parameter of COM type BSTR*, the parameter can be a Lisp string. The value of the parameter at the end of the
body will be returned as a value.

• For parameters of COM type VARIANT*, the parameter can be any Lisp object. The value of the parameter at the end of
the body will be returned as a value.

• If the value is a foreign pointer of the type that the FLI would generate for the parameter's type then the foreign object it
points to will be the value of the parameter. The foreign pointer will be returned as a value, with the new contents as
modified (or not) by the method.

1 Using COM

25

• Otherwise, the parameter is passed directly to the method and the value of the parameter at the end of the body will be
returned as a value.

1 Using COM

26

2 COM Reference Entries

This chapter documents COM functionality.

add-ref Function

Summary

Increments the reference count of a COM interface pointer.

Package

com

Signature

add-ref interface-ptr => ref-count

Arguments

interface-ptr⇓ A COM interface pointer.

Values

ref-count The new reference count.

Description

Each COM interface pointer has a reference count which is used by the server to control its lifetime. The function add-ref

should be called whenever an extra reference to interface-ptr is being made. The function invokes the COM method
IUnknown::AddRef so the form (add-ref ptr) is equivalent to using call-com-interface as follows:

(call-com-interface (ptr i-unknown add-ref))

Examples

(add-ref p-foo)

See also

release
interface-ref
query-interface
call-com-interface

27

automation-server-command-line-action Function

Summary

Reports what action was specified for the automation server.

Package

com

Signature

automation-server-command-line-action => action

Values

action One of the keywords :register, :unregister or :embedding, or nil.

Description

The function automation-server-command-line-action inspects the command line to see what action was specified
for the automation server. The possible return values have the following meanings:

:register The server should register itself (by register-server). Specified by /RegServer.

:unregister The server should unregister itself (by unregister-server). Specified by /UnRegServer.

:embedding The server was run with /Embedding or -Embedding.

nil No recognized action.

See also

register-server
unregister-server

automation-server-main Function

Summary

For use as the main function for an automation server.

Package

com

Signature

automation-server-main &key exit-delay exit-function new-process force-server forced-exit-delay quit-on-registry-error
handle-registry-error

2 COM Reference Entries

28

Arguments

exit-delay⇓ A non-negative real number.

exit-function⇓ A function specifier.

new-process⇓ A boolean.

force-server⇓ A boolean.

forced-exit-delay⇓ A non-negative real number.

quit-on-registry-error⇓
A boolean.

handle-registry-error⇓
A boolean.

Description

The function automation-server-main is for use as the main function for an automation server.

exit-delay, if supplied, sets the exit delay for automation-server-top-loop, by calling
set-automation-server-exit-delay with it.

exit-function is an exit-function for automation-server-top-loop. The default value of exit-function is
server-can-exit-p.

new-process controls whether to run automation-server-top-loop in its own process.

force-server controls whether to force running the automation server even if the application starts normally. The default value
of force-server is t.

forced-exit-delay specifies a value for exit-delay in seconds when force-server is non-nil.

automation-server-main checks the command line (using automation-server-command-line-action) for what
action it should do, and then does it.

If the action is :register or :unregister, automation-server-main tries register or unregister the server (using
register-server and unregister-server). If the operation succeeds, automation-server-main just returns
:register or :unregister.

handle-registry-error controls what happens if there is an error while trying to register or unregister. If nil is supplied then
error is called, and if a non-nil value is supplied, then the error is handled. If handle-registry-error is not supplied, by
default the error is handled, but if the command line contains -debug or /debug, the error is not handled. The default value
of handle-registry-error is nil.

quit-on-registry-error controls what happens if an error occurs during registration. If it is non-nil (the default), then
automation-server-main calls quit with the appropriate status value (5). Otherwise it returns :register-failed or
:unregister-failed. The default value of quit-on-registry-error is t.

If the command line action is :embedding or the action is nil and force-server is non-nil (the default) then
automation-server-main runs the server by using automation-server-top-loop. If new-process is nil (the
default), automation-server-top-loop is called on the current process. In this case automation-server-main
returns only after automation-server-top-loop exits (and the server was closed). If new-process is true,
automation-server-top-loop is called on its own process and automation-server-main returns immediately.

If the server is "forced", that is the action is nil but force-server is non-nil, and forced-exit-delay is non-nil, exit-delay is set
to forced-exit-delay (using set-automation-server-exit-delay). This overrides the supplied for exit-delay.

2 COM Reference Entries

29

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

automation-server-main returns the result of automation-server-command-line-action, except in the case of
registry failure as described above.

Notes

1. automation-server-main is intended to be used as the main function in an automation server that is delivered as an
executable (rather than as a DLL).

2. When the application acts only as automation server, automation-server-main can be the function argument to
deliver, or the restart-function in save-image (multiprocessing t is needed too). It will deal correctly with
registration when the command line argument is supplied, otherwise runs the server until it can exit and then returns (the
application will exit because there will not be any other processes).

3. When the application also needs to do other things, automation-server-main can be used to run the server. Note
that with the default values when automation-server-main runs the server it does not return until the server exits, so
you need to either pass :new-process t, or run it on its own process. You will also need to consider whether to wait
when failing to register, and hence may want to pass :quit-on-registry-failure nil.

See also

automation-server-top-loop
automation-server-command-line-action
set-automation-server-exit-delay

automation-server-top-loop Function

Summary

A function to run a COM server.

Package

com

Signature

automation-server-top-loop &key exit-delay exit-function

Arguments

exit-delay⇓ A non-negative real number specifying a time in seconds.

exit-function⇓ A function designator.

Description

The function automation-server-top-loop calls co-initialize and start-factories, and then processes
messages, until the server can exit. Since COM works by messages, it will end up processing all COM requests.

exit-function determines when the server can exit. It defaults to server-can-exit-p, which is normally the right function.
This returns t when the COM server is not used and there are no other "working processes". See the documentation for
server-can-exit-p. When exit-function is supplied, it needs to be a function of no arguments which returns true when the
server can exit. exit-function is used like a wait function: it is called repeatedly, it needs to be reasonably fast, and should not
wait for anything.

2 COM Reference Entries

30

Once the server can exit, automation-server-top-loop delays exiting for another period of time, exit-delay seconds.
exit-delay defaults to 5, and can be set by calling set-automation-server-exit-delay. If supplied, exit-delay is
passed to set-automation-server-exit-delay on entry. However, later calls to
set-automation-server-exit-delay can change the exit delay.

After the delay automation-server-top-loop checks again by calling exit-function. If this returns false it goes on to
process messages. Otherwise it stops the factories, calls co-uninitialize and returns.

Notes

1. automation-server-top-loop interacts with the deliver keyword :quit-when-no-windows, such that the
delivered application does not quit even after all CAPI windows are closed as long as
automation-server-top-loop has not returned.

2. automation-server-top-loop does not return while the server is active. Typically it will be running on its own
process.

3. automation-server-top-loop uses mp:general-handle-event to process Lisp events, so it is possible to run in
the same thread operations that rely on such messages. In particular, CAPI windows can start on the same process.
However, all COM input is processed in this thread, so it is probably better to start CAPI windows on other processes, so
that they do not interfere with each other.

4. automation-server-top-loop does not return a useful value.

See also

start-factories
stop-factories
automation-server-main
server-can-exit-p
set-automation-server-exit-delay

call-com-interface Macro

Summary

Invokes a method from a particular COM interface.

Package

com

Signature

call-com-interface spec {arg}* => value*

spec ::= (interface-ptr interface-name method-name)

Arguments

spec The interface pointer and a specification of the method to be called.

arg⇓ Arguments to the method (see 1.8.1 Data conversion when calling COM methods for
details).

interface-ptr⇓ A form which is evaluated to yield a COM interface pointer.

2 COM Reference Entries

31

interface-name⇓ A symbol which names the com interface. It is not evaluated.

method-name⇓ A symbol which names the method. It is not evaluated.

Values

value*⇓ Values from the method (see 1.8.1 Data conversion when calling COM methods for
details).

Description

The macro call-com-interface invokes the method method-name for the COM interface interface-name, which should
the type or a supertype of the actual type of interface-ptr. args and value* are described in detail in 1.8.1 Data conversion
when calling COM methods.

Examples

This example invokes the COM method GetTypeInfo in the interface IDispatch.

(defun get-type-info (disp tinfo &key
 (locale LOCALE_SYSTEM_DEFAULT))
 (multiple-value-bind (hres typeinfo)
 (call-com-interface
 (disp i-dispatch get-type-info)
 tinfo locale)
 (check-hresult hres 'get-type-info)
 typeinfo))

See also

with-com-interface
query-interface
add-ref
release

call-com-object Macro

Summary

Invokes a COM method on a COM object.

Package

com

Signature

call-com-object spec {arg}* => value*

spec ::= (object class-name method-spec &key interface)

method-spec ::= method-name | (interface-name method-name)

2 COM Reference Entries

32

Arguments

spec The object and a specification of the method to be called.

arg⇓ Arguments to the method (see 1.10.1 Data conversion when calling COM object
methods for details).

object⇓ A form which is evaluated to yield a COM object.

class-name⇓ A symbol which names the COM implementation class. It is not evaluated.

method-spec⇓ Specifies the method to be called. It is not evaluated.

interface⇓ A form.

method-name⇓ A symbol naming the method to call.

interface-name⇓ A symbol.

Values

value*⇓ Values from the method (see 1.10.1 Data conversion when calling COM object methods
for details).

Description

The macro call-com-object invokes the method method-name for the COM class class-name, which should the type or a
supertype of the actual type of object. args and value* are described in detail in 1.10.1 Data conversion when calling COM
object methods.

If method-spec contains an interface-name, then it should name the interface of the method to call. This is only required if
the implementation class class-name has more than one method with the given method-name.

If interface is supplied, it should be a form that, when evaluated, yields a COM interface pointer. This is only needed if the
definition of the method being called has the :interface keyword in its class-spec.

Note that, because this macro requires a COM object, it can only be used by the implementation of that object. All other code
should use call-com-interface with the appropriate COM interface pointer.

Examples

(call-com-object (my-doc doc-impl move) 0 0)

(call-com-object (my-doc doc-impl resize) 100 200)

See also

with-com-object
query-object-interface
call-com-interface

2 COM Reference Entries

33

check-hresult Macro

Summary

Signals an error if a result code indicates a failure.

Package

com

Signature

check-hresult hresult function-name

Arguments

hresult⇓ An integer hresult.

function-name⇓ A name for inclusion in the error message.

Description

The macro check-hresult checks hresult and returns if it is one of the 'succeeded' values, for instance S_OK or S_FALSE.
Otherwise check-hresult signals an error of type com-error, which will include function-name in its message.

Examples

(check-hresult S_OK "test") => nil

(check-hresult E_NOINTERFACE "test")
signals an error mentioning "test"

See also

succeeded
hresult
hresult-equal

co-create-guid Function

Summary

Makes a unique refguid object.

Package

com

2 COM Reference Entries

34

Signature

co-create-guid &key register => refguid

Arguments

register⇓ A generalized boolean.

Values

refguid A refguid object.

Description

The function co-create-guid makes a new unique refguid object. If register is true (the default), then the table of
known refguids is updated.

Examples

Make a GUID without registering it in the table of known refguids:

(com:co-create-guid :register nil)
=>
#<REFGUID FOO C76B64AF-969A-4EFF-97BC-6CE2EB65019B>

See also

refguid
make-guid-from-string
com-interface-refguid
guid-equal
guid-to-string
refguid-interface-name

co-initialize Function

Summary

Initialize the COM library in the current thread.

Package

com

Signature

co-initialize &optional co-init

Arguments

co-init⇓ Flags to specify the concurrency model and initialization options for the thread.

2 COM Reference Entries

35

Description

The function co-initialize initializes COM for the current thread. This must be called by every thread that uses COM
client or server functions.

The default value of co-init is COINIT_APARTMENTTHREADED. Other flags are allowed as for the dwCoInit argument to
CoInitializeEx.

LispWorks takes care of cleaning up COM when a thread exits, but you can also do this explicitly using co-uninitialize.

Examples

(co-initialize)

See also

co-uninitialize

com-error Condition Class

Summary

The condition class used to signal errors from COM.

Package

com

Superclasses

cl:error

Subclasses

com-dispatch-invoke-exception-error

Initargs

:hresult An integer giving the hresult of the error.

:function-name Either nil or a string or symbol describing the function that generated the error.

Readers

com-error-hresult
com-error-function-name

Description

The condition class com-error is used by the Lisp COM API when signaling errors that originate as hresult code from
COM.

2 COM Reference Entries

36

http://www.lispworks.com/documentation/HyperSpec/Body/a_error.htm

Examples

This function silently ignores the E_NOINTERFACE error:

(defun call-ignoring-nointerface-error (function)
 (handler-bind
 ((com-error
 #'(lambda (condition)
 (when (hresult-equal (com-error-hresult
 condition)
 E_NOINTERFACE)
 (return-from
 call-ignoring-nointerface-error
 nil)))))
 (funcall function)))

See also

check-hresult
hresult-equal
hresult

com-interface System Class

Summary

The class of all COM interface pointers.

Package

com

Superclasses

t

Description

The system class com-interface is used for all COM interface pointers.

Examples

(typep (query-interface ptr 'i-unknown) 'com-interface)
=> t

See also

call-com-interface

2 COM Reference Entries

37

com-interface-refguid Function

Summary

Return the refguid object for a named COM interface.

Package

com

Signature

com-interface-refguid interface-name => refguid

Arguments

interface-name⇓ A symbol naming a COM interface.

Values

refguid The refguid object matching interface-name.

Description

The function com-interface-refguid returns a refguid object that matches interface-name, which should be a symbol
as described in 1.3 The mapping from COM names to Lisp symbols. This definition of this COM interface must have been
converted to Lisp FLI definitions as in 1.2.2 Generating FLI definitions from COM definitions or 3.1 Including
Automation in a Lisp application.

Examples

(guid-to-string (com-interface-refguid 'i-unknown))
=> "00000000-0000-0000-C000-000000000046"

See also

refguid
guid-equal
guid-to-string
make-guid-from-string
refguid-interface-name

com-object Class

Summary

The ancestor of an COM object implementation classes.

2 COM Reference Entries

38

Package

com

Superclasses

cl:standard-object

Subclasses

standard-i-unknown

Description

The class com-object is the ancestor of all COM object implementation classes. In general, it is more useful to inherit from
its subclass standard-i-unknown, which provides an implementation of the i-unknown interface.

Examples

For a COM object my-doc:

(typep my-doc 'com-object) => t

See also

standard-i-unknown

com-object-destructor Generic Function

Summary

Called when a COM object loses its last interface pointer.

Package

com

Signature

com-object-destructor object

Method signatures

com-object-destructor (object standard-i-unknown)

com-object-destructor :around (object standard-i-unknown)

Arguments

object⇓ A COM object.

2 COM Reference Entries

39

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_ob.htm

Description

The generic function com-object-destructor is called by the implementation of the class standard-i-unknown at the
point where the last COM interface pointer is removed for object, i.e. where the overall reference count becomes zero. After
this, object is known only to Lisp and is not involved in any COM operations and will be freed as normal by the garbage
collector. The built-in primary method specializing on standard-i-unknown does nothing. The build-in around method
specializing on standard-i-unknown frees the memory used by the COM interface pointers. Typically, after methods are
defined to handle class-specific cleanups.

This function should not be called directly by user code.

Examples

(defmethod com-object-destructor :after
 ((my-doc doc-impl))
 (close (document-file my-doc)))

See also

com-object-initialize
standard-i-unknown

com-object-from-pointer Function

Summary

Return the COM object that implements a particular COM interface pointer.

Package

com

Signature

com-object-from-pointer pointer => object

Arguments

pointer⇓ A foreign pointer.

Values

object A COM object or nil.

Description

The function com-object-from-pointer returns the COM object that implements pointer. The value of pointer should be
a foreign pointer or COM interface pointer that was created by LispWorks itself and implemented by a subclass of
com-object. If pointer is not a known COM interface pointer then nil is returned.

Examples

(com-object-from-pointer my-ptr)

2 COM Reference Entries

40

See also

com-object

com-object-initialize Generic Function

Summary

Called when a COM object gets its first interface pointer.

Package

com

Signature

com-object-initialize object

Method signatures

com-object-initialize (object standard-i-unknown)

Arguments

object⇓ A COM object.

Description

The generic function com-object-initialize is called by the built-in class standard-i-unknown at the point where
the first COM interface pointer is made for object. Prior to this, object is known only to Lisp and is not involved in any COM
operations. The built-in primary method specializing on standard-i-unknown does nothing.

This function should not be called directly by user code.

Examples

(defmethod com-object-initialize :after
 ((my-doc doc-impl))
 (ensure-open-document-file my-doc))

See also

com-object-destructor
standard-i-unknown

com-object-query-interface Generic Function

Summary

Called by the built in implementation of query-interface.

2 COM Reference Entries

41

Package

com

Signature

com-object-query-interface object iid => interface-for-iid, skip-add-ref-p

Method signatures

com-object-query-interface (object standard-i-unknown) (iid t)

Arguments

object⇓ A COM object.

iid⇓ A GUID foreign pointer.

Values

interface-for-iid⇓ The new interface pointer or nil if none.

skip-add-ref-p⇓ A boolean.

Description

The generic function com-object-query-interface is called by the built-in implementation of query-interface for
the class standard-i-unknown.

iid is the GUID of the interface to return.

If skip-add-ref-p is nil then query-interface will invoke the COM method IUnknown::AddRef on interface-for-iid
before returning it.

The built-in primary method specializing on standard-i-unknown handles the i-unknown interface and all the interfaces
specified by the define-com-implementation form for the class of object.

In most cases, there is no need to specialize this generic function for user-defined classes.

You should not call com-object-query-interface directly.

See also

define-com-implementation
standard-i-unknown

co-task-mem-alloc Function

Summary

Allocates a block of foreign memory for use in COM method argument passing.

Package

com

2 COM Reference Entries

42

Signature

co-task-mem-alloc &key type pointer-type initial-element initial-contents nelems => pointer

Arguments

type⇓ A foreign type.

pointer-type⇓ A foreign pointer type.

initial-element⇓ An object.

initial-contents⇓ A list.

nelems⇓ An integer.

Values

pointer A pointer to the specified type or pointer-type.

Description

The function co-task-mem-alloc calls the C function CoTaskMemAlloc() to allocate a block of memory.

type, pointer-type, initial-element, initial-contents and nelems are handled in the same way as for the function
fli:allocate-foreign-object.

Examples

Two ways to allocate memory for an integer:

(co-task-mem-alloc :type :int)

(co-task-mem-alloc :pointer-type '(:pointer :int))

See also

co-task-mem-free

co-task-mem-free Function

Summary

Frees a block of foreign memory used in COM method argument passing.

Package

com

Signature

co-task-mem-free pointer => pointer2

2 COM Reference Entries

43

Arguments

pointer⇓ A foreign pointer for the block to be freed.

Values

pointer2 The same as pointer.

Description

The function co-task-mem-free calls the C function CoTaskMemFree() to free a block of memory pointed to by pointer.
pointer should not be dereferenced after calling this function.

Examples

(co-task-mem-free ptr)

See also

co-task-mem-alloc

co-uninitialize Function

Summary

Close the COM library in the current thread.

Package

com

Signature

co-uninitialize

Description

The function co-uninitialize closes the COM library on the current thread. This should be called when COM is no
longer required, for instance before exiting the application.

Examples

(co-uninitialize)

See also

co-initialize

2 COM Reference Entries

44

create-instance Function

Summary

Starts the implementation of a remote COM object and returns its interface pointer.

Package

com

Signature

create-instance clsid &key unknown-outer clsctx riid errorp => interface-ptr

Arguments

clsid⇓ A string or a refguid giving a CLSID to create.

unknown-outer⇓ A COM interface pointer specifying the outer i-unknown if the new instance is to be
aggregated.

clsctx⇓ A value from the CLSCTX enumeration.

riid⇓ An optional refiid giving the name of the COM interface return.

errorp⇓ A boolean. The default is t.

Values

interface-ptr A COM interface pointer for riid.

Description

The function create-instance creates an instance of the COM server associated with clsid and returns an interface pointer
for its riid interface. If riid is nil, then i-unknown is used.

If the server cannot be started, then an error of type com-error will be signaled if errorp is true, otherwise nil will be
returned.

If unknown-outer is non-nil, it will be passed as the outer unknown interface to be aggregated with the new instance.

clsctx indicate the execution contexts in which an object is to be run. It defaults to CLSCTX_SERVER.

Notes

You must initialize the COM runtime before calling create-instance (see 1.4 Initializing the COM runtime).

To create an i-dispatch interface and set an event handler, you can use create-instance-with-events.

Examples

(create-instance
 "000209FF-0000-0000-C000-000000000046")

2 COM Reference Entries

45

See also

refguid
refiid
i-unknown
create-object
create-instance-with-events

define-com-implementation Macro

Summary

Defines an implementation class for a particular set of interfaces.

Package

com

Signature

define-com-implementation class-name ({superclass-name}*) ({slot-specifier}*) {class-option}*

Arguments

class-name⇓ A symbol naming the class to define.

superclass-name⇓ A symbol naming a superclass to inherit from.

slot-specifier⇓ A slot description as used by defclass.

class-option⇓ An option as used by defclass.

Description

The macro define-com-implementation defines a standard-class named class-name, which is used to implement a
COM object. Normal defclass inheritance rules apply for slots and Lisp methods.

Each superclass-name argument specifies a direct superclass of the new class, which can be another COM implementation
class or any other standard-class provided that com-object is included somewhere in the overall class precedence list.
To get the built-in handling for the i-unknown interface, inherit from standard-i-unknown (which is the default
superclass if no others are specified).

slot-specifiers are standard defclass slot definitions.

class-options are standard defclass options. In addition the following class-options are recognized:

(:interfaces interface-name*)

Each interface-name specifies a COM interface that the object will implement. i-unknown
should not be specified unless the you wish to replace the standard implementation provided by
standard-i-unknown. If more than one interface-name is given then all the methods must
have different names (except for those which are inherited from a common parent interface).

(:inherit-from from-class-name interface-name*)

2 COM Reference Entries

46

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

This indicates that the class will inherit the implementation of all the methods in the interfaces
specified by the interface-names directly from from-class-name, which must be one of the direct
or indirect superclasses of the class being defined. Without this option, methods from
superclasses are inherited indirectly and can be shadowed in the class being defined. Use of
:inherit-from allows various internal space-optimizations.

For example, given a COM class foo-impl which implements the i-foo interface, this
definition of bar-impl:

(define-com-implementation bar-impl (foo-impl)
 ()
 (:interfaces i-foo))

will allow methods from i-foo to be shadowed whereas this definition:

(define-com-implementation bar-impl (foo-impl)
 (:interfaces i-foo)
 (:inherit-from foo-impl i-foo))

will result in an error if a method from i-foo is redefined for bar-impl.

(:dont-implement interface-name*)

This option tells standard-i-unknown that it should not respond to query-interface for
the given interface-names (which should be parents of the interfaces implemented by the class
being defined). Normally, standard-i-unknown will respond to query-interface for a
parent interface by returning a pointer to the child interface.

For example, given an interface i-foo-internal and subinterface i-foo-public, the
following definition:

(define-com-implementation foo-impl ()
 ()
 (:interfaces i-foo-public))

specifies that foo-impl will respond to query-interface for i-foo-public and
i-foo-internal, whereas the following definition:

(define-com-implementation foo-impl ()
 (:interfaces i-foo-public)
 (:dont-implement i-foo-internal))

specifies that foo-impl will respond to query-interface for i-foo-public only.

Examples

(define-com-implementation i-robot-impl ()
 ((tools :accessor robot-tools))
 (:interfaces i-robot)
)

(define-com-implementation i-r2d2-impl (i-robot-impl)
 ()
 (:interfaces i-robot i-r2d2)
)

2 COM Reference Entries

47

See also

define-com-method
standard-i-unknown

define-com-method Macro

Summary

The macro define-com-method is used to define a COM method for a particular implementation class.

Package

com

Signature

define-com-method method-spec (class-spec {arg-spec}*) {form}*

method-spec ::= method-name | (interface-name method-name)

class-spec ::= (this class-name &key interface)

arg-spec ::= (parameter-name [direction [pass-style]])

Arguments

method-spec⇓ Specifies the method to be defined.

class-spec Specifies the implementation class and variables bound to the object within forms.

arg-spec Describes one of the method's arguments.

form⇓ Forms which implement the method. The value of the final form is returned as the result
of the method.

method-name⇓ A symbol naming the method to define.

interface-name⇓ A symbol.

this⇓ A symbol which will be bound to the COM object whose method is being invoked.

class-name⇓ A symbol naming the COM implementation class for which this method is defined.

interface⇓ A optional symbol which will be bound to the COM interface pointer whose method is
being invoked. Usually this is not needed unless the interface pointer is being passed to
some other function in the implementation.

parameter-name⇓ A symbol which will be bound to that argument's value while forms are evaluated.

direction⇓ Specifies the direction of the argument, either :in, :out or :in-out If specified, it must
match the definition of the interface. The default is taken from the definition of the
interface.

pass-style⇓ Specifies how the argument will be converted to a Lisp value. It can be either :lisp or
:foreign, the default is :lisp.

Description

The macro define-com-method defines a COM method that implements the method method-name for the COM
implementation class class-name. The extended method-spec syntax containing interface-name is required if class-name

2 COM Reference Entries

48

implements more than one interface with a method called method-name (analogous to the C++ syntax
InterfaceName::MethodName).

When the COM method is called, each form is evaluated in a lexical environment containing the following bindings.

The symbol this is bound to the instance of the COM implementation class on which the method is being invoked. The
symbol this is also defined as a local macro (as if by with-com-object), which allows the body to invoke other methods on
the instance.

If present, the symbol interface is bound to the interface pointer on which the method is being invoked.

Each foreign argument is converted to a Lisp argument as specified by its direction and pass-style and the corresponding
parameter-name is bound to the converted value. See 1.9.6 Data conversion in define-com-method for details.

The value of the final form should be an hresult, which is returned from the COM method.

If an error is to be returned from an Automation method, the function set-error-info can be used to provide more details
to the caller.

Examples

(define-com-method (i-robot rotate)
 ((this i-robot-impl)
 (axis :in)
 (angle-delta :in))
 (let ((joint (find-joint axis)))
 (rotate-joint joint))
 S_OK)

See also

define-com-implementation
set-error-info
set-variant

find-clsid Function

Summary

Searches the registry for a GUID or ProgId.

Package

com

Signature

find-clsid name &optional errorp => refguid

Arguments

name⇓ A string or a refguid.

errorp⇓ A generalized boolean.

2 COM Reference Entries

49

Values

refguid A refguid.

Description

The function find-clsid searches for the supplied GUID or ProgId in the registry.

name can be a string representing a GUID (with or without the curly brackets) or a string containing a ProgId. Otherwise
name can be a refguid, which is simply returned.

If find-clsid fails to find the GUID, it either signals an error or returns nil, depending on the value of errorp. The default
value of errorp is t.

Examples

To find the GUID of the Explorer ActiveX:

(com:find-clsid "Shell.Explorer")

get-object Function

Summary

Returns an interface pointer for a named object.

Package

com

Signature

get-object name &key riid errorp => interface-ptr

Arguments

name⇓ A string.

riid⇓ An optional refiid giving the name of the COM interface return.

errorp⇓ A boolean. The default value is t.

Values

interface-ptr A COM interface pointer for riid.

Description

The function get-object finds an existing object named by name in the Running Object Table or activates the object if it is
not running.

get-object returns an interface pointer for the object's riid interface. If riid is nil, then i-unknown is used.

If an error occurs, an error of type com-error will be signaled if errorp is non-nil, otherwise nil will be returned.

2 COM Reference Entries

50

Examples

If C:\temp\spreadsheet.xls is open in Microsoft Excel 2007, then its WorkBook interface can be obtained using:

(get-object "c:\\Temp\\spreadsheet.xls"
 :riid 'i-dispatch)

See also

create-instance
create-object
get-active-object

guid-equal Function

Summary

Compares the GUID data in two GUID pointers.

Package

com

Signature

guid-equal guid1 guid2 => flag

Arguments

guid1⇓ A foreign pointer to a GUID object.

guid2⇓ A foreign pointer to a GUID object.

Values

flag A boolean, true if guid1 and guid2 contain the same GUID data.

Description

The function guid-equal compares the GUID data in guid1 and guid2 and returns true if the data is identical.

Examples

(guid-equal (com-interface-refguid 'i-unknown)
 (com-interface-refguid 'i-dispatch))
=> nil

(guid-equal (com-interface-refguid 'i-unknown)
 (make-guid-from-string
 "00000000-0000-0000-C000-000000000046"))
=> t

2 COM Reference Entries

51

See also

refguid
com-interface-refguid
guid-to-string
make-guid-from-string
refguid-interface-name

guid-to-string Function

Summary

Converts a GUID to a string of hex characters.

Package

com

Signature

guid-to-string guid => guid-string

Arguments

guid⇓ A foreign pointer to a GUID object.

Values

guid-string A string in the standard hex format for GUIDs.

Description

The function guid-to-string converts the data in guid to a string of hex characters in the standard-format.

Examples

(guid-to-string (com-interface-refguid 'i-unknown))
=> "00000000-0000-0000-C000-000000000046"

See also

refguid
com-interface-refguid
guid-equal
make-guid-from-string
refguid-interface-name

2 COM Reference Entries

52

hresult FLI Type Descriptor

Summary

The FLI type corresponding to HRESULT in C/C++.

Package

com

Syntax

hresult

Description

The FLI type hresult is a signed 32 bit integer. When used as the result type of a COM method, the value E_UNEXPECTED
is returned if the COM method body does not return an integer.

See also

hresult-equal
check-hresult

hresult-equal Function

Summary

Compares one hresult to another.

Package

com

Signature

hresult-equal hres1 hres2 => flag

Arguments

hres1⇓ An integer hresult.

hres2⇓ An integer hresult.

Values

flag A boolean, true if hres1 and hres2 are equal.

Description

The function hresult-equal compares hres1 and hres2 and returns true if they represent the same hresult. This function

2 COM Reference Entries

53

differs from the Common Lisp function eql because it handles signed and unsigned versions of each hresult.

Examples

E_NOTIMPL is negative, so:

(eql E_NOTIMPL 2147500033)
=> nil

(hresult-equal E_NOTIMPL 2147500033)
=> t

See also

hresult
check-hresult
com-error

interface-ref Accessor

Summary

Accesses a place containing an interface pointer, maintaining reference counts.

Package

com

Signature

interface-ref iptr-place => iptr

setf (interface-ref iptr-place) iptr => iptr

Arguments

iptr-place⇓ A place containing a COM interface pointer or nil.

iptr⇓ A COM interface pointer or nil.

Values

iptr⇓ A COM interface pointer or nil.

Description

The accessor interface-ref is useful when manipulating a place containing an interface pointer.

The setf form increments the reference count, as if by add-ref, of iptr, unless it is nil. It then decrements the reference
count, as if by release, of the existing value in iptr-place, unless this is nil. Note that this order is important in the case
that the new value is the same as the current value. Finally the value of place iptr-place is set to iptr.

The reader interface-ref simply returns the interface pointer stored in iptr-place and does no reference counting. It may
be useful in a form which both reads and writes a place like incf.

2 COM Reference Entries

54

http://www.lispworks.com/documentation/HyperSpec/Body/a_eql.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_incf_.htm

See also

add-ref
release

i-unknown COM Interface Type

Summary

The Lisp name for the IUnknown COM interface.

Package

com

Description

The COM interface type i-unknown is the name given to the IUnknown COM interface within Lisp. The name results from
the standard mapping described in 1.3 The mapping from COM names to Lisp symbols.

Examples

(query-interface ptr 'i-unknown)

See also

standard-i-unknown
i-dispatch

make-factory-entry Function

Summary

Makes a object which can be used to register a class factory.

Package

com

Signature

make-factory-entry &key clsid implementation-name constructor-function constructor-extra-args friendly-name prog-id
version-independent-prog-id

Arguments

clsid⇓ The CLSID of the coclass.

implementation-name⇓ A Lisp symbol naming the implementation class.

constructor-function⇓ A function to construct the object.

2 COM Reference Entries

55

constructor-extra-args⇓
Extra arguments to pass to constructor-function.

friendly-name⇓ A string.

prog-id⇓ A string.

version-independent-prog-id⇓
A string.

Description

The function make-factory-entry makes an object to contain all the information for class factory registration in the COM
runtime for clsid. This object should be passed to register-class-factory-entry to perform the registration. This
done automatically if you use define-automation-component described in the 3 Using Automation.

If constructor-function is nil, the default constructor is used which makes an instance of implementation-name and queries it
for a i-unknown interface pointer. The default constructor also handles aggregation.

If constructor-function is non-nil, it is called by LispWorks with the unknown-outer (non-nil if aggregation is being used),
the IID of the interface to return and the values in constructor-extra-args. It should return three values: the hresult, the
COM interface pointer and the instance of implementation-name.

constructor-extra-args supplies extra arguments to pass to constructor-function. It defaults to a list containing
implementation-name.

friendly-name is the name of the coclass for use by application builders.

prog-id and version-independent-prog-id specify the ProgID and VersionIndependentProgID of the coclass when it is
registered.

Examples

(make-factory-entry
 :clsid (make-guid-from-string
 "7D9EB762-E4E5-11D5-BF02-000347024BE1")
 :implementation-name 'doc-impl
 :prog-id "Wordifier.Document.1"
 :version-independent-prog-id "Wordifier.Document"
 :friendly-name "Wordifier Document")

See also

register-class-factory-entry

make-guid-from-string Function

Summary

Make a refguid object from a hex string.

Package

com

2 COM Reference Entries

56

Signature

make-guid-from-string string &optional interface-name => refguid

Arguments

string⇓ A string in the standard hex format for GUIDs.

interface-name⇓ A symbol naming a COM interface. If non-nil, refguid will be will added to the table of
known refguids.

Values

refguid A refguid object matching string.

Description

The function make-guid-from-string makes a refguid object from string. If the GUID data matches a known
refguid, then that is returned. Otherwise, a new refguid is created and returned. If interface-name is non-nil, then the
table of known refguids is updated. If the GUID is already known under a different name, an error is signaled.

Examples

This GUID is a predefined one for i-unknown:

(refguid-interface-name
 (make-guid-from-string
 "00000000-0000-0000-C000-000000000046"))
=> I-UNKNOWN

See also

refguid
com-interface-refguid
guid-equal
guid-to-string
refguid-interface-name

midl Function

Summary

Converts an IDL file into Lisp FLI definitions.

Package

com

Signature

midl file &key package depth mapping-options output-file load import-search-path

2 COM Reference Entries

57

Arguments

file⇓ A pathname designator.

package⇓ A package designator.

depth⇓ A non-negative integer.

mapping-options⇓ An alist.

output-file⇓ nil, t or a pathname designator.

load⇓ A generalized boolean.

import-search-path⇓ A list of pathname designators or :default.

Description

The function midl is used to convert an IDL file file into Lisp FLI definitions, which is necessary before the types in the file
can be used from the Lisp COM API. See 1.3 The mapping from COM names to Lisp symbols for the details on how these
FLI definitions are named.

package specifies the package in which definitions are created. It defaults to the current package.

depth specifies how many levels of IDL import statement to convert to Lisp. This defaults to 0, which means only convert
definitions for the IDL file itself. Imported files should be converted and loaded before the importing file. Some of the
standard files are preloaded, so should not be loaded again (see 1.2.3 Standard IDL files).

mapping-options allows options to be passed controlling the conversion of individual definitions.

If output-file is nil (the default), the IDL file is compiled in-memory. Otherwise a Lisp fasl is produced so the definitions
can be reloaded without requiring recompilation. If output-file is t then the fasl is named after the IDL file, otherwise output-
file is used as a pathname designator to specify the name of the fasl file.

If load is true (the default) then any fasl produced is loaded after being compiled. Otherwise, the fasl must be loaded
explicitly with load. This argument has no effect if output-file is nil.

Import paths

When the file that midl processes contains import statements (which is the normal case, because at least "unknwn.idl" is
needed), midl looks for the imported file in these directories:

1. A directory in import-search-path, or if it is :default in the directory of file.

Note: you can pass import-search-path as nil to prevent searching in the directory of file. In many cases that is the more
useful behavior.

2. The directories in the list that was set by midl-set-import-paths, or if it is :default the directories in the
INCLUDE environment variable.

3. The directories in the list that is returned by midl-default-import-paths.

The recommended way of getting the standard files to import is to install Windows SDK from microsoft.com. If you install it
in the default place, midl-default-import-paths should be able to find the right paths. Thus normally installing the
Windows SDK is all you need to do to get the standard midl files.

Notes

midl requires that types like IDispatch are declared before they are used.

2 COM Reference Entries

58

http://www.lispworks.com/documentation/HyperSpec/Body/f_import.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_load.htm

Examples

To compile myfile.idl into memory:

(midl "myfile.idl")

To compile myfile.idl to myfile.ofasl:

(midl "myfile.idl" :output-file t :load nil)

To compile myfile.idl to myfile.ofasl and load it:

(midl "myfile.idl" :output-file t)

See also

:midl-file

midl-default-import-paths Function

Summary

Returns the default directories for midl to search for imported idl files.

Package

com

Signature

midl-default-import-paths => paths-list

Values

paths-list A list.

Description

The function midl-default-import-paths returns the default directories for midl to search for imported idl files. See
midl for more details.

You can call midl-default-import-paths to see what paths midl is going to use. Microsoft do not actually document
where you should be looking for imported files, so there is an element of guessing in midl-default-import-paths, but
if you install the Windows SDK in the default place it should work.

If the Windows SDK is not installed, midl-default-import-paths tries to see if the PlatformSDK (the previous
incarnation of the Windows SDK) is installed, and uses it instead.

See also

midl

2 COM Reference Entries

59

:midl-file Defsystem Member Type

Summary

Used to include IDL files in a Lisp system definition.

Package

com

Description

The defsystem member type :midl-file can be used to include IDL files in a Lisp system definition.

When a file is given the type :midl-file, compiling the system will compile the IDL file to produce a fasl. Loading the
system will load this fasl. The :package, :mapping-options and :import-search-path keywords can specified as for
midl.

Examples

;; Include the file myfile.idl in a system
(defsystem my-system ()
 :members (("myfile.idl" :type :midl-file)))

See also

midl

midl-set-import-paths Function

Summary

Sets an internal list for midl to search for imported files.

Package

com

Signature

midl-set-import-paths paths-list

Arguments

paths-list⇓ A list of path-specs (see below), a single path-spec or the keyword :default.

Description

The function midl-set-import-paths sets an internal list for midl to search for imported files. This list overrides the
value of the INCLUDE environment variable.

2 COM Reference Entries

60

paths-list can be either a list of path-specs, where a path-spec is either a pathname or a string, or a single path-spec, which is
interpreted as a list of this path-spec. It can also be the keyword :default, which resets it so it uses the INCLUDE
environment variable.

Notes

In most cases midl should be able to find the imported files in the list that is returned by midl-default-import-paths,
so midl-set-import-paths should rarely be useful.

See also

midl

query-interface Function

Summary

Attempts to obtain a COM interface pointer for one interface from another.

Package

com

Signature

query-interface interface-ptr iid &key errorp => interface-for-iid

Arguments

interface-ptr⇓ A COM interface pointer to be queried.

iid⇓ The iid of a COM interface.

errorp⇓ A boolean. The default is t.

Values

interface-for-iid⇓ The new COM interface pointer or nil.

Description

The function query-interface function invokes the COM method IUnknown::QueryInterface to attempt to obtain an
interface pointer for iid from interface-ptr.

iid can be a symbol naming a COM interface or a refguid foreign pointer containing its iid.

If IUnknown::QueryInterface returns successfully then the new interface pointer interface-for-iid is returned.

If errorp is true, then nil is returned if the interface pointer cannot be found, otherwise an error of type com-error is
signaled.

Examples

(query-interface p-foo 'i-bar)

2 COM Reference Entries

61

See also

refguid
com-error
add-ref
release
with-temp-interface
with-query-interface

query-object-interface Macro

Summary

Obtains a COM interface pointer for a particular interface from a COM object.

Package

com

Signature

query-object-interface class-name object iid &key ppv-object => hresult, interface-ptr-for-iid

Arguments

class-name⇓ A COM class name.

object⇓ A COM object to be queried.

iid⇓ The iid of a COM interface.

ppv-object⇓ A foreign pointer or nil.

Values

hresult The hresult.

interface-ptr-for-iid⇓
The new interface pointer or nil if none.

Description

The macro query-object-interface invokes the COM method IUnknown::QueryInterface to attempt to obtain an
interface pointer for iid from object.

iid can be a symbol naming a COM interface or a refguid foreign pointer containing its iid.

class-name must be the COM object class name of object or one of its superclass names.

The first value is the integer hresult from the call to IUnknown::QueryInterface. If the result indicates success, then
interface-ptr-for-iid is returned as the second value. If ppv-object is non-nil, then interface-ptr-for-iid will be stored there as
well.

Examples

(query-object-interface foo-impl p-foo 'i-bar)

2 COM Reference Entries

62

See also

refguid
hresult

refguid FLI Type Descriptor

Summary

A FLI type used to refer to GUID objects.

Package

com

Syntax

refguid

Description

The FLI type refguid type is a pointer to a GUID structure, like the type REFGUID in C. In addition, a table of named
refguids is maintained, using the names chosen when COM interface types are converted to a Lisp FLI definitions by midl

or parsing a type library.

Examples

(typep (com-interface-refguid 'i-unknown) 'refguid)
=> t

See also

com-interface-refguid
guid-equal
guid-to-string
make-guid-from-string
refguid-interface-name
refiid
midl

refguid-interface-name Function

Summary

Returns the COM interface name of a refguid if known.

Package

com

2 COM Reference Entries

63

Signature

refguid-interface-name refguid => interface-name

Arguments

refguid⇓ A refguid object.

Values

interface-name A symbol naming the COM interface of refguid.

Description

The function refguid-interface-name returns a symbol naming the COM interface of refguid, which must be a
refguid object known to Lisp.

Examples

(refguid-interface-name
 (make-guid-from-string
 "00000000-0000-0000-C000-000000000046"))
=> i-unknown

See also

refguid
com-interface-refguid
guid-equal
guid-to-string
make-guid-from-string

refiid FLI Type Descriptor

Summary

A FLI type used to refer to iids.

Package

com

Syntax

refiid

Description

The FLI type refiid is a useful converted type for IID arguments to foreign functions. When given a symbol, it looks up the
GUID as if by calling com-interface-refguid. Otherwise the value should be a foreign pointer to a GUID structure,
which is passed directly without conversion.

2 COM Reference Entries

64

Examples

Given the definition of print-iid:

(fli:define-foreign-function print-iid
 ((iid refiid)))

then these two forms are equivalent:

(print-iid 'i-unknown)

(print-iid (com-interface-refguid 'i-unknown))

See also

com-interface-refguid
refguid

register-class-factory-entry Function

Summary

Registers the description of a class factory.

Package

com

Signature

register-class-factory-entry new-factory-entry

Arguments

new-factory-entry⇓ A factory entry from make-factory-entry.

Description

The function register-class-factory-entry registers new-factory-entry with the COM runtime so that
register-server, unregister-server, start-factories and stop-factories will know about the coclass in the
factory entry. This is done automatically if you use define-automation-component described in the 3 Using
Automation.

Examples

See also

make-factory-entry
start-factories
stop-factories
register-server
unregister-server

2 COM Reference Entries

65

register-server Function

Summary

Externally registers all class factories known to Lisp.

Package

com

Signature

register-server &key clsctx

Arguments

clsctx⇓ A value from the CLSCTX enumeration.

Description

The function register-server updates the Windows registry to contain the appropriate keys for all the class factories
registered in the current Lisp image. For Automation components, the type libraries are registered as well. During
development, the type library will be found wherever the system definition specified, but after using LispWorks delivery it
must be located in the directory containing the application's executable or DLL.

register-server should be called when an application is installed, usually by detecting the /RegServer command line
argument.

clsctx indicates the execution contexts in which class factories should be used. It defaults to CLSCTX_INPROC_SERVER.

When running on 64-bit Windows, 32-bit LispWorks updates the 32-bit registry view and 64-bit LispWorks updates the 64-bit
registry view. LispWorks does not change the registry reflection settings.

Examples

(defun start-up-function ()
 (cond ((member "/RegServer"
 system:*line-arguments-list*
 :test 'equalp)
 (register-server))
 ((member "/UnRegServer"
 system:*line-arguments-list*
 :test 'equalp)
 (unregister-server))
 (t
 (co-initialize)
 (start-factories)
 (start-application-main-loop)))
 (quit))

See also

unregister-server
register-class-factory-entry
start-factories

2 COM Reference Entries

66

stop-factories
set-register-server-error-reporter

release Function

Summary

Decrements the reference count of an interface pointer.

Package

com

Signature

release interface-ptr => ref-count

Arguments

interface-ptr⇓ A COM interface pointer.

Values

ref-count The new reference count.

Description

Each COM interface pointer has a reference count which is used by the server to control its lifetime. The function release

should be called whenever a reference to interface-ptr is being removed. The function invokes the COM method
IUnknown::Release so the form (release ptr) is equivalent to using call-com-interface as follows:

(call-com-interface (ptr i-unknown release))

Examples

(release p-foo)

See also

add-ref
interface-ref
query-interface
with-temp-interface

server-can-exit-p
server-in-use-p Functions

Summary

Predicates for whether a COM server is in use or can exit.

2 COM Reference Entries

67

Package

com

Signatures

server-can-exit-p => result

server-in-use-p => result

Values

result A boolean.

Description

The function server-in-use-p returns true when the COM server is in use, which means one or more of the following:

1. There are live objects other than the class factories.

2. Any of the class factories has more than one reference.

3. The server is locked by a client call to the COM method IClassFactory::LockServer.

The function server-can-exit-p returns true if the server can exit, which means that the server is not in use (that is,
(not (server-in-use-p)) returns t), and also that there are no other "working processes", which means that all other
processes except the one that calls server-can-exit-p are "Internal servers" (see mp:process-run-function).

The main purpose of server-can-exit-p is to be the exit-function for automation-server-top-loop, either as the
default or called from a supplied exit-function.

See also

automation-server-top-loop

set-automation-server-exit-delay Function

Summary

Sets exit delay used by automation-server-top-loop.

Package

com

Signature

set-automation-server-exit-delay exit-delay

Arguments

exit-delay⇓ A non-negative real number specifying a time in seconds.

2 COM Reference Entries

68

Description

The function set-automation-server-exit-delay sets exit-delay as the exit delay used by
automation-server-top-loop to delay exiting once the server is unused.

set-automation-server-exit-delay can be called both before and after automation-server-top-loop, and can
be used repeatedly after automation-server-top-loop was called to dynamically change the exit delay. The setting
persists over saving and delivering an image, so it can be used in the delivery script too.

See also

automation-server-top-loop

set-register-server-error-reporter Function

Summary

Allows control over the reporting, logging or debugging of failures from register-server and unregister-server.

Package

com

Signature

set-register-server-error-reporter func => func

Arguments

func⇓ A function or a fbound symbol.

Values

func A function or a fbound symbol.

Description

The function set-register-server-error-reporter sets up a function func that is called to report when calls and
automatic calls to register-server or unregister-server via the system-defined entry points of a DLL fail.

func should be a function of two arguments.

The automatic calls happen when registering/unregistering a LispWorks DLL that was saved or delivered with the keyword
:com in its :dll-exports (see 1.2.4 Making a COM DLL with LispWorks). If such a call fails, func is invoked with the
name of the function that failed (currently either register-server or unregister-server) and the condition. func
should report the failure in a useful way, which would normally mean logging it in a place where you can inspect it later.

Notes

1. After func returns or throws out, the automatic call returns with an appropriate failure code, and the code that tries to
register (that is, the program that called DllRegisterServer or DllUnregisterServer) should normally print an
error too. For example, regsvr32 would raise a dialog by default. However, this dialog will not contain any
information about what failed inside Lisp.

2 COM Reference Entries

69

2. By default (that is, if you do not call set-register-server-error-reporter) any such error is simply printed to
standard output.

3. func can force entering the debugger using cl:invoke-debugger, which may sometimes be useful during
development.

See also

register-server
unregister-server

s_ok Macro

Summary

Compares a result code to the value of S_OK.

Package

com

Signature

s_ok hresult => flag

Arguments

hresult⇓ An integer hresult.

Values

flag A boolean.

Description

The macro s_ok checks hresult and returns true if its value is that of the constant S_OK. Otherwise it returns false.

Examples

(S_OK S_OK) => t

(S_OK S_FALSE) => nil

(S_OK E_NOINTERFACE) => nil

See also

succeeded
hresult
hresult-equal
check-hresult

2 COM Reference Entries

70

http://www.lispworks.com/documentation/HyperSpec/Body/f_invoke.htm

standard-i-unknown Class

Summary

A complete implementation of the i-unknown interface.

Package

com

Superclasses

com-object

Subclasses

standard-i-dispatch
standard-i-connection-point-container

Initargs

:outer-unknown An optional interface pointer to the outer unknown interface if this object is aggregated.

Description

The class standard-i-unknown provides a complete implementation of the i-unknown interface.

The class provides a reference count for the object which calls the generic function com-object-initialize when the
object is given a reference count and com-object-destructor when it becomes zero again. These generic functions can
be specialized to perform initialization and cleanup operations.

The class also provides an implementation of query-interface which calls the generic function
com-object-query-interface. The default method handles i-unknown and all the interfaces specified by the
define-com-implementation form for the class of the object.

There is support for aggregation via the :outer-unknown initarg, which is also passed by built-in class factory
implementation.

Examples

Inheriting from a non-COM class requires standard-i-unknown to be mentioned explicitly:

(define-com-implementation doc-impl
 (document-mixin
 standard-i-unknown)
 ()
 (:interfaces i-doc))

See also

define-com-implementation
standard-i-dispatch
standard-i-connection-point-container
com-object-initialize

2 COM Reference Entries

71

com-object-destructor
com-object-query-interface
com-object
i-unknown

start-factories Function

Summary

Starts all the registered class factories.

Package

com

Signature

start-factories &optional clsctx

Arguments

clsctx⇓ The CLSCTX in which to start the factories.

Description

The function start-factories starts all the registered class factories in the given clsctx, which defaults to
CLSCTX_LOCAL_SERVER. This function should be called once when a COM server application starts if it has externally
registered class factories.

See also

register-class-factory-entry
stop-factories
register-server
unregister-server
co-initialize

stop-factories Function

Summary

Stops all the registered class factories.

Package

com

Signature

stop-factories

2 COM Reference Entries

72

Description

The function stop-factories stops all the registered class factories. This function should be called once before a COM
server application exits if it has externally registered class factories.

See also

register-class-factory-entry
start-factories
register-server
unregister-server
co-uninitialize

succeeded Macro

Summary

Checks an hresult for success.

Package

com

Signature

succeeded hresult => flag

Arguments

hresult⇓ An integer hresult.

Values

flag A boolean.

Description

The macro succeeded checks hresult and returns true if the it is one of the 'succeeded' values, for instance S_OK or
S_FALSE. Otherwise, it returns false.

Examples

(succeeded S_OK) => t

(succeeded E_NOINTERFACE) => nil

See also

check-hresult
hresult
hresult-equal
s_ok

2 COM Reference Entries

73

unregister-server Function

Summary

Externally unregisters all class factories known to Lisp.

Package

com

Signature

unregister-server

Description

The function unregister-server updates the Windows registry to remove the appropriate keys for all the class factories
registered in the current Lisp image. For Automation components, the type libraries are unregistered as well.

This function should be called when an application is uninstalled, usually by detecting the /UnRegServer command line
argument.

When running on 64-bit Windows, 32-bit LispWorks updates the 32-bit registry view and 64-bit LispWorks updates the 64-bit
registry view. LispWorks does not change the registry reflection settings.

Examples

(defun start-up-function ()
 (cond ((member "/UnRegServer"
 system:*line-arguments-list*
 :test 'equalp)
 (unregister-server))
 ((member "/RegServer"
 system:*line-arguments-list*
 :test 'equalp)
 (register-server))
 (t
 (co-initialize)
 (start-factories)
 (start-application-main-loop)))
 (quit))

See also

register-server
register-class-factory-entry
start-factories
stop-factories
set-register-server-error-reporter

2 COM Reference Entries

74

with-com-interface Macro

Summary

Used to simplify invocation of several methods from a particular COM interface pointer.

Package

com

Signature

with-com-interface disp interface-ptr {form}* => values

disp ::= (dispatch-function interface-name)

Arguments

disp The names of the dispatch function and interface.

interface-ptr⇓ A form which is evaluated to yield a COM interface pointer that implements interface-
name.

form⇓ A form to be evaluated.

dispatch-function⇓ A symbol.

interface-name⇓ A symbol which names the COM interface. It is not evaluated.

Values

values⇓ The values returned by the last form.

Description

The macro with-com-interface evaluates each form in a lexical environment where dispatch-function is defined as a local
macro.

dispatch-function can be used to invoked the methods on interface-ptr for the COM interface interface-name, which should
be the type or a supertype of the actual type of interface-ptr.

dispatch-function has the following signature:

dispatch-function method-name arg* => values

where:

method-name A symbol which names the method. It is not evaluated.

arg Arguments to the method (see 1.8.1 Data conversion when calling COM methods for details).

values Values from the method (see 1.8.1 Data conversion when calling COM methods for details).

Examples

This example invokes the COM method GetTypeInfo in the interface IDispatch.

2 COM Reference Entries

75

(defun get-type-info (disp tinfo &key
 (locale LOCALE_SYSTEM_DEFAULT))
 (multiple-value-bind (hres typeinfo)
 (with-com-interface (call-disp i-dispatch) disp
 (call-disp get-type-info tinfo locale))
 (check-hresult hres 'get-type-info)
 typeinfo))

See also

call-com-interface

with-com-object Macro

Summary

Used to simplify invocation of several methods from a given COM object.

Package

com

Signature

with-com-object disp object {form}* => values

disp ::= (dispatch-function class-name &key interface)

Arguments

disp The names of the dispatch function and object class.

object⇓ A form which is evaluated to yield a COM object.

form⇓ A form to be evaluated.

dispatch-function⇓ A symbol.

class-name⇓ A symbol which names the COM implementation class. It is not evaluated.

interface⇓ A form.

Values

values⇓ The values returned by the last form.

Description

The macro with-com-object evaluates each form in a lexical environment where dispatch-function is defined as a local
macro.

dispatch-function can be used to invoked the methods on object for the COM class class-name, which should be the type or a
supertype of the actual type of object.

dispatch-function has the following signature:

dispatch-function method-spec arg* => values

2 COM Reference Entries

76

method-spec ::= method-name | (interface-name method-name)

where:

method-spec Specifies the method to be called. It is not evaluated.

method-name A symbol naming the method to call.

interface-name A symbol naming the interface of the method to call. This is only required if the implementation
class class-name has more than one method with the given method-name.

arg Arguments to the method (see 1.10.1 Data conversion when calling COM object methods for
details).

values Values from the method (see 1.10.1 Data conversion when calling COM object methods for
details).

If interface is supplied, it should be a form that, when evaluated, yields a COM interface pointer. This is only needed if the
definition of the method being called has the :interface keyword in its class-spec.

Note that, because with-com-object requires a COM object, it can only be used by the implementation of that object. All
other code should use with-com-interface with the appropriate COM interface pointer.

Examples

(with-com-object (call-my-doc doc-impl) my-doc
 (call-my-doc move 0 0)
 (call-my-doc resize 100 200))

See also

call-com-object
define-com-method
with-com-interface

with-query-interface Macro

Summary

Used to simplify reference counting when querying a COM interface pointer.

Package

com

Signature

with-query-interface disp interface-ptr {form}* => value*

disp ::= (punknown interface-name &key errorp dispatch)

Arguments

interface-ptr⇓ A form which is evaluated to yield a COM interface pointer to query.

form⇓ A form to be evaluated.

2 COM Reference Entries

77

punknown⇓ A symbol.

interface-name⇓ A symbol which names the COM interface. It is not evaluated.

errorp⇓ A generalized boolean.

dispatch⇓ A symbol.

Values

value* The values returned by the last form.

Description

The macro with-query-interface calls query-interface to find an interface pointer for interface-name from the
existing COM interface pointer interface-ptr. It evaluates each form with the variable punknown bound to the queried pointer
and the pointer is released when control leaves the body (whether directly or due to a non-local exit).

If errorp is true, then punknown is bound to nil if the interface pointer cannot be found, otherwise an error of type
com-error is signaled.

If dispatch is non-nil, then a local macro named by dispatch is created as if by with-com-interface to invoke COM
interface methods on punknown.

Examples

This example invokes the methods on an i-bar interface pointer queried from an existing interface pointer.

(with-query-interface (p-bar i-bar
 :dispatch call-bar)
 p-foo
 (call-bar bar-init)
 (call-bar bar-print))

See also

query-interface
release
with-temp-interface

with-temp-interface Macro

Summary

Used to simplify reference counting for a COM interface pointer.

Package

com

Signature

with-temp-interface (var) interface-ptr {form}* => value*

2 COM Reference Entries

78

Arguments

var⇓ A symbol.

interface-ptr⇓ A form which is evaluated to yield a COM interface pointer.

form⇓ A form to be evaluated.

Values

value* The values returned by the last form.

Description

The macro with-temp-interface evaluates each form with the variable var bound to the value of interface-ptr. When
control leaves the body (whether directly or due to a non-local exit), release is called with this interface pointer.

Examples

This example invokes the COM method GetDocumentation in the interface ITypeInfo on an interface pointer which
must be released after use.

(defun get-tinfo-member-documentation (disp tinfo
 member-id)
 (with-temp-interface (typeinfo)
 (get-type-info disp tinfo)
 (call-com-interface (typeinfo i-type-info
 get-documentation)
 member-id)))

See also

release
with-query-interface

2 COM Reference Entries

79

3 Using Automation

3.1 Including Automation in a Lisp application

This section describes how to load Automation and generate any FLI definitions needed to use it.

3.1.1 Loading the modules

Before using any of the LispWorks Automation APIs, you need to load the module using:

(require "automation")

3.1.2 Generating FLI definitions from COM definitions

Automation components and interfaces that are to be used by the Automation API must be placed in a type library using
suitable tools. In some cases, this type library will be supplied as part of the DLL or executable containing the component.

Some of the Automation APIs described in this chapter require you to convert the definitions in the type library into FLI
definitions. This is done by compiling and loading a system definition that references the library with the options :type
:midl-type-library-file. The names in the type library are converted to Lisp symbols as specified in 1.3 The
mapping from COM names to Lisp symbols.

Note: this is not required by all the APIs, for example see 3.3.2 Calling Automation methods without a type library and
3.4.2 A simple implementation of a single Automation interface.

3.1.3 Reducing the size of the converted library

Suppose you have a defsystem system definition form that references a library: that is, a system member has options
:type :midl-type-library-file as described in 3.1.2 Generating FLI definitions from COM definitions.

For this member, the option :com can be added to specify whether all the COM functionality is required. The keyword can
take these values:

t Analyze and generate all the required code for calling and implementing the interfaces from the
type library. This is the default value.

nil Analyze but do not generate any code for calling or implementing COM interfaces from the type
library. It is still possible to call Automation methods.

:not-binary Analyze but do not generate any code for calling or implementing COM interfaces from the type
library. It is still possible to call Automation methods and implement dispinterfaces in the type
library, but not dual or COM interfaces.

Using the value nil or :not-binary generates much smaller code and is therefore much faster. However, it is never
obligatory to use the option :com.

Use :com nil when the application calls Automation interfaces from the type library but does not implement any of them or
need to call any methods from dual interfaces using call-com-interface.

80

Use :com :not-binary when the application implements only dispinterfaces from the library. This is typically required for
implementing sink interfaces for use with connection points.

3.2 Starting a remote Automation server

A remote Automation server is started from Lisp by using its coclass name, CLSID or ProgID. The macro with-coclass

can be used to make an instance of an automation server from its coclass name for the duration of its body. The function
create-object can be used to start an automation server given its CLSID or ProgID. The function
create-instance-with-events can be used to start and automation server and set its event handler. The function
get-active-object can be used to look for a registered running instance of a coclass in the system Running Object Table.

3.3 Calling Automation methods

Automation methods can be called either with or without a compiled type library. In both cases, arguments and return values
are converted according to the types specified by the method's definition.

3.3.1 Calling Automation methods using a type library

To use this approach, you must have the type library available at compile-time (see 3.1.2 Generating FLI definitions from
COM definitions). Information from the type library is built into your application, which makes method calling more
efficient. However, it also makes it less dynamic, because the library at the time the application is run must match.

There are three kinds of Automation method, each of which is called using macros designed for the purpose.

• Ordinary methods are called using the macros call-dispatch-method and with-dispatch-interface. If there is
no Automation method with the given method name, then a property getter with the same name is called if it exists,
otherwise an error is signaled. The setf form of call-dispatch-method can be used to call property setter methods.

• Property getter methods are called using the macro call-dispatch-get-property.

• Property setter methods are called using the macros call-dispatch-put-property or the setf form of
call-dispatch-get-property.

To use these macros, you need to specify the interface name, the method name, a COM interface pointer for the i-dispatch
interface and suitable arguments. The interface and method names are given as symbols named as in 1.3 The mapping from
COM names to Lisp symbols and the COM interface pointer is a foreign pointer of type com-interface. In all the
macros, the args and values are as specified in the 3.3.3 Data conversion when calling Automation methods.

The with-dispatch-interface macro is useful when several methods are being called with the same COM interface
pointer, because it establishes a local macro that takes just the method name and arguments.

3.3.2 Calling Automation methods without a type library

This approach is useful if the type library is not available at compile time or you want to allow methods to be called
dynamically without knowing the interface pointer type at compile-time. It can be less efficient than using the approach in
3.3.1 Calling Automation methods using a type library, but is often the simplest approach, especially if the Automation
component was written to be called from a language like Visual Basic.

There are three kinds of Automation method, each of which is called using functions designed for the purpose.

• Ordinary methods are called using the function invoke-dispatch-method. If there is no Automation method with the
given method name, then a property getter with the same name is called if it exists, otherwise an error is signaled. The
setf form of invoke-dispatch-method can be used to call property setter methods.

3 Using Automation

81

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

• Property getter methods are called using the function invoke-dispatch-get-property.

• Property setter methods are called either using the function invoke-dispatch-put-property or the setf form of
invoke-dispatch-get-property.

To use these functions, you need to specify a COM interface pointer for the i-dispatch interface, the method name and
suitable arguments. The method name is given as a string or integer and the COM interface pointer is a foreign pointer of
type com-interface. In all the functions, the args and values are as specified in the 3.3.3 Data conversion when calling
Automation methods.

3.3.3 Data conversion when calling Automation methods

The arguments and return values to Automation methods are restricted to a small number of simple types, which map to Lisp
types as follows:

Automation types, VT codes and their corresponding Lisp types

Automation type VT code Lisp type

null value VT_NULL the symbol :null

empty value VT_EMPTY the symbol :empty

SHORT VT_I2 integer

LONG VT_I4 integer

FLOAT VT_R4 single-float

DOUBLE VT_R8 double-float

CY VT_CY not supported

DATE VT_DATE not supported

BSTR VT_BSTR string

IDispatch* VT_DISPATCH FLI (:pointer i-dispatch)

SCODE VT_ERROR integer

VARIANT_BOOL VT_BOOL nil or t

VARIANT* VT_VARIANT recursively convert

IUnknown* VT_UNKNOWN FLI (:pointer i-unknown)

DECIMAL VT_DECIMAL not supported

BYTE VT_UI1 integer

SAFEARRAY VT_ARRAY array

dynamic dynamic lisp-variant

When an Automation argument is a lisp-variant object, its type is used to set the VT code. See make-lisp-variant
and set-variant.

In and in-out parameters are passed as positional arguments in the calling forms and out and in-out parameters are returned as
additional values. If there is an argument with the retval attribute then it is returned as the first value.

Optional parameters can be passed as :not-specified if they are not needed. Alternatively, they can be omitted if all
remaining optional arguments are also omitted.

If there is a parameter marked with the vararg attribute then any arguments after the last optional argument will be collected

3 Using Automation

82

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm

into an array and passed as the value of that parameter.

3.3.4 Using collections

The macro do-collection-items can be used to iterate over the items or an interface that implements the Collection
protocol. If the collection items are interface pointers, they must be released when not needed.

For example, to iterate over the Table objects from the Tables collection of a MyDocument interface pointer:

(with-temp-interface (tables)
 (call-dispatch-get-property
 (doc my-document tables))
 (do-collection-items (table tables)
 (inspect-the-table table)
 (release table)))

3.3.5 Using connection points

Event sink interfaces can be connected and disconnected using the functions interface-connect and
interface-disconnect.

For example, the following macro connects a sink interface pointer event-handler to a source of i-clonable-events
events clonable for the duration of its body.

(defmacro handling-clonable-events ((clonable event-handler)
 &body body)
 (lw:with-unique-names (cookie)
 (lw:rebinding (clonable event-handler)
 `(let ((,cookie nil))
 (unwind-protect
 (progn
 (setq ,cookie
 (interface-connect ,clonable
 'i-clonable-events
 ,event-handler))
 ,@body)
 (when ,cookie
 (interface-disconnect ,clonable
 'i-clonable-events
 ,cookie)))))))

3.3.6 Error handling

When an Automation server returns an error code, the calling macros such as call-dispatch-method signal an error of
type com-error. The error message will contain the source and description fields from the error.

For example, if pp is a dispatch pointer to i-test-suite-1:

CL-USER 184 > (call-dispatch-method
 (pp nil i-test-suite-1 fx))
"in fx" ;; implementation running
Error: COM IDispatch::Invoke Exception Occurred (0 "fx") : foo
 1 (abort) Return to level 0.
 2 Return to top loop level 0.

Type :b for backtrace, :c <option number> to proceed, or :? for other options

3 Using Automation

83

3.4 Implementing Automation interfaces in Lisp

This section describes two techniques for implementing Automation interfaces in Lisp. The choice of technique usually
depends on whether you are implementing a complete server or a simple event sink. The section then describes other kinds of
interfaces that can be implemented and how to report errors to the caller of a method.

3.4.1 A complete implementation of an Automation server

In the case where you are designing an set of COM interfaces and implementing a server to support them, you need to make a
complete implementation in Lisp. This allows several Automation interfaces to be implemented by a single class and also
supports dual interfaces.

The implementation defines an appropriate class, inheriting from the class standard-i-dispatch to obtain an
implementation of the COM interface i-dispatch. This implementation of i-dispatch will automatically invoke the
appropriate COM method.

For dual interfaces, the methods should be defined in the same way as described for COM interfaces in 1.9 Implementing
COM interfaces in Lisp.

For dispinterfaces, the methods should be implemented using the macro define-dispinterface-method or by a
specialized method of the generic function com-object-dispinterface-invoke.

To implement an Automation interface in Lisp with standard-i-dispatch, you need the following:

1. A type library for the component, converted to Lisp as specified in 3.1 Including Automation in a Lisp application.

2. A COM object class defined with define-automation-component or define-automation-collection,
specifying the coclass or interface(s) to implement.

3. Implementations of the methods using define-com-method, define-dispinterface-method or
com-object-dispinterface-invoke.

4. For an out-of-process Automation component, either use automation-server-main or have registration code which
calls register-server and unregister-server, typically after checking the result of
automation-server-command-line-action or explicitly checking the command line for arguments /RegServer
and /UnRegServer.

5. Initialization code which either calls automation-server-top-loop or automation-server-main, or calls
co-initialize and start-factories in a thread that will be processing Windows messages (for instance a CAPI
thread).

3.4.2 A simple implementation of a single Automation interface

In the case where you are implementing a single dispinterface that was designed by someone else, for example an event sink,
you can usually avoid needing to parse a type library or define a class to implement the interface.

Instead, you implement a dispinterface using the class simple-i-dispatch by doing the following:

1. Obtain an interface pointer that will provide type information for the component, to be used as the related-dispatch
argument in the call to the function query-simple-i-dispatch-interface. In the case where you are
implementing an event sink, the source interface pointer will usually do this.

2. Optionally, define a class with defclass inheriting from simple-i-dispatch. The class simple-i-dispatch can
be used itself if no special callback object is required.

3. Implement an invoke-callback that selects and implements the methods of the interface.

3 Using Automation

84

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

4. Define initialization code which calls co-initialize, obtains the related-dispatch from step 1, makes an instance of
the COM object class defined in step 2 with the invoke-callback from step 3, obtains its interface pointer by calling
query-simple-i-dispatch-interface (passing the related-dispatch) and attaches this interface pointer to the
appropriate sink in the related-dispatch (for example using connection point functions such as interface-connect).
This must all be done in a thread that will be processing Windows messages (for instance a CAPI thread).

3.4.3 Implementing collections

Interfaces that support the Collection protocol can be implemented using the macro define-automation-collection.
This defines a subclass of standard-automation-collection, which implements the minimal set of collection methods
and calls Lisp functions to provide the items. If the collection items are interface pointers, appropriate reference counting
must be observed.

See the example files here:

(example-edit-file "com/automation/collections/")

3.4.4 Implementing connection points

Lisp implementations can act as event sources via a built-in implementation of the IConnectionPointContainer
interface, which define-automation-component provides if source interfaces are specified. A built-in implementation of
IConnectionPoint handles connections for each interface and the macro do-connections can be used to iterate over
the connections when firing the events.

3.4.5 Reporting errors

Classes defined using define-automation-component allow extended error information to be returned for all
Automation methods. Within the body of a define-com-method definition, the function set-error-info can be called
to describe the error. In addition, this function returns the value of DISP_E_EXCEPTION, which can be returned directly as
the hresult from the method.

For example:

(define-com-method (i-test-suite-1 fx)
 ((this c-test-suite-1))
 (print "in fx")
 (set-error-info :description "foo"
 :iid 'i-test-suite-1
 :source "fx"))

3.4.6 Registering a running object for use by other applications

If other applications need to be able to find one of your running objects from its coclass, then call
register-active-object to register an interface pointer for the object in the system Running Object Table. Call
revoke-active-object to remove the registration.

3.4.7 Automation of a CAPI application

For an example of how to implement an Automation server that controls a CAPI application, see the file:

(example-edit-file "com/automation/capi-application/build")

3 Using Automation

85

3.5 Examples of using Automation

Several complete examples are provided in the examples subdirectory of your LispWorks library.

A simple Automation application:

(example-edit-file "com/automation/capi-application/readme.txt")

(example-edit-file "com/automation/cl-smtp/clsmtp-impl-build")

Controlling an Automation application:

(example-edit-file "com/automation/capi-application/readme.txt")

(example-edit-file "com/automation/cl-smtp/clsmtp-test")

Getting events from COM interfaces:

(example-edit-file "com/automation/events/ie-events")

(example-edit-file "com/automation/capi-application/readme.txt")

3 Using Automation

86

4 Automation Reference Entries

This chapter documents Automation functionality.

call-dispatch-get-property Macro

Summary

Calls an Automation property getter method from a particular interface.

Package

com

Signature

call-dispatch-get-property spec {arg}* => value*

spec ::= (dispinterface-ptr dispinterface-name method-name)

Arguments

spec The interface pointer and a specification of the method to be called.

arg⇓ Arguments to the method (see 3.3.3 Data conversion when calling Automation methods
for details).

dispinterface-ptr⇓ A form which is evaluated to yield a COM i-dispatch interface pointer.

dispinterface-name⇓ A symbol which names the Automation interface. It is not evaluated.

method-name⇓ A symbol which names the property getter method. It is not evaluated.

Values

value* Values from the method (see 3.3.3 Data conversion when calling Automation methods
for details).

Description

The macro call-dispatch-get-property is used to invoke an Automation property getter method from Lisp.

dispinterface-ptr should be a COM interface pointer for the i-dispatch interface.

The appropriate Automation property getter method, chosen using dispinterface-name and method-name, is invoked after
evaluating each arg, which must be values that are suitable for the method and of types compatible with Automation.

The values returned are as specified by the method signature. In general, property getter methods take no arguments and
return the value of the property, but see 3.3.3 Data conversion when calling Automation methods for more details.

There is also setf expander for call-dispatch-get-property, which can be used as an alternative to the
call-dispatch-put-property macro.

87

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Examples

For example, in order to get and set the Width property of a MyDocument interface pointer:

(call-dispatch-get-property
 (doc my-document width))

(setf (call-dispatch-get-property
 (doc my-document width))
 10)

See also

call-dispatch-put-property
call-dispatch-method

call-dispatch-method Macro

Summary

Calls an Automation method from a particular interface.

Package

com

Signature

call-dispatch-method spec {arg}* => value*

spec ::= (dispinterface-ptr dispinterface-name method-name)

Arguments

spec The interface pointer and a specification of the method to be called.

arg⇓ Arguments to the method (see 3.3.3 Data conversion when calling Automation methods
for details).

dispinterface-ptr⇓ A form which is evaluated to yield a COM i-dispatch interface pointer.

dispinterface-name⇓ A symbol which names the Automation interface. It is not evaluated.

method-name⇓ A symbol which names the method. It is not evaluated.

Values

value* Values from the method (see 3.3.3 Data conversion when calling Automation methods
for details).

Description

The macro call-dispatch-method is used to invoke an Automation method from Lisp.

dispinterface-ptr should be a COM interface pointer for the i-dispatch interface.

4 Automation Reference Entries

88

The appropriate Automation method, chosen using dispinterface-name and method-name, is invoked after evaluating each
arg, which must be values that are suitable for the method and of types compatible with Automation.

The values returned are as specified by the method signature. See 3.3.3 Data conversion when calling Automation methods
for more details.

If there is no Automation method with the given method-name, then a property getter with the same name is called if it exists,
otherwise an error is signaled.

The setf form of call-dispatch-method can be used to call property setter methods.

Examples

For example, in order to invoke the ReFormat method of a MyDocument interface pointer:

(call-dispatch-method (doc my-document re-format))

See also

with-dispatch-interface
call-dispatch-get-property
call-dispatch-put-property

call-dispatch-put-property Macro

Summary

Calls an Automation property setter method from a particular interface.

Package

com

Signature

call-dispatch-put-property spec {arg}* => value*

spec ::= (dispinterface-ptr dispinterface-name method-name)

Arguments

spec The interface pointer and a specification of the method to be called.

arg⇓ Arguments to the method (see 3.3.3 Data conversion when calling Automation methods
for details).

dispinterface-ptr⇓ A form which is evaluated to yield a COM i-dispatch interface pointer.

dispinterface-name⇓ A symbol which names the Automation interface. It is not evaluated.

method-name⇓ A symbol which names the property getter method. It is not evaluated.

Values

value* Values from the method (see 3.3.3 Data conversion when calling Automation methods
for details).

4 Automation Reference Entries

89

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Description

The macro call-dispatch-put-property is used to invoke an Automation property setter method from Lisp.

dispinterface-ptr should be a COM interface pointer for the i-dispatch interface.

The appropriate Automation property setter method, chosen using dispinterface-name and method-name, is invoked after
evaluating each arg, which must be values that are suitable for the method and of types compatible with Automation.

The values returned are as specified by the method signature.

In general, property setter methods take one argument (the new value) and return the no values, but see 3.3.3 Data
conversion when calling Automation methods for more details.

There is also setf expander for call-dispatch-get-property, which can be used as an alternative to the
call-dispatch-put-property macro.

Examples

For example, in order to set the Width property of a MyDocument interface pointer:

(call-dispatch-put-property
 (doc my-document width)
 10)

See also

call-dispatch-get-property
call-dispatch-method

com-dispatch-invoke-exception-error Condition Class

Summary

The condition class used to signal Automation exceptions.

Package

com

Superclasses

com-error

Description

The condition class com-dispatch-invoke-exception-error is used by the LispWorks COM API when Automation
signals an exception (DISP_E_EXCEPTION).

See also

com-dispatch-invoke-exception-error-info

4 Automation Reference Entries

90

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

com-dispatch-invoke-exception-error-info Function

Summary

Retrieves information stored in a com-dispatch-invoke-exception-error.

Package

com

Signature

com-dispatch-invoke-exception-error-info condition fields => field-values

Arguments

condition⇓ A com-dispatch-invoke-exception-error.

fields⇓ A list of keywords as specified below.

Values

field-values⇓ A list.

Description

The function com-dispatch-invoke-exception-error-info retrieves information about the exception from condition.
The keywords in fields are used to select which information is returned in field-values, which is a list of values
corresponding to each keyword in fields.

The following keyword are supported in fields:

:code The error code.

:source The source of the error.

:description The description of the error.

:help-file The help file for the error.

:help-context The help context for the error.

Examples

(handler-case
 (com:invoke-dispatch-method counter "Run")
 (com:com-dispatch-invoke-exception-error (condition)
 (destructuring-bind (code description)
 (com:com-dispatch-invoke-exception-error-info
 condition
 '(:code :description))
 (format *error-output*
 "Run failed with code ~D, description ~S."
 code
 description))))

4 Automation Reference Entries

91

See also

com-dispatch-invoke-exception-error

com-object-dispinterface-invoke Generic Function

Summary

A generic function called by IDispatch::Invoke when there is no defined dispinterface method.

Package

com

Signature

com-object-dispinterface-invoke com-object method-name method-type args => value

Arguments

com-object⇓ A COM object whose method is being invoked.

method-name⇓ A string naming the method to be called.

method-type⇓ A keyword specifying the type of method being called.

args⇓ A vector containing the arguments to the method.

Values

value⇓ A value suitable for return from a COM method.

Description

The generic function com-object-dispinterface-invoke is called by IDispatch::Invoke when there is no method
defined using define-dispinterface-method.

Methods can be written for com-object-dispinterface-invoke, specializing on an Automation implementation class
and implementing the method dispatch based on method-name and method-type.

method-name is a string specifying the name of the method as given by the method declaration in the IDL or type library.

method-type, has one of the following values:

:get when invoking a property getter method.

:put when invoking a property setter method.

:method when invoking a normal method.

The arguments to the method are contained in the vector args, in the order specified by the method declaration in the type
library. For in and in-out arguments, the corresponding element of args contains the argument value converted to the type
specified by the method declaration and then converted to Lisp objects as specified in 3.3.3 Data conversion when calling
Automation methods. For out and in-out arguments, the corresponding element of args should be set by the method to
contain the value to be returned to the caller and will be converted to an automation value as specified in 3.3.3 Data
conversion when calling Automation methods.

4 Automation Reference Entries

92

value should be a value which can be converted to the appropriate return type as the primary value of the method and will be
converted to an automation value as specified in 3.3.3 Data conversion when calling Automation methods. It is ignored for
methods that are declared as returning void.

Notes

When using com-object-dispinterface-invoke, it is not possible to distinguish between invocations of the same
method name for different interfaces when com-object implements several interfaces. If this is required, then the method
must be defined with define-dispinterface-method.

Examples

(defmethod com:com-object-dispinterface-invoke ((this my-dispinterface)
 method-name
 method-type
 args)
 (cond ((equal method-name "MyProperty")
 (case method-type
 (:get
 (slot-value this 'my-property))
 (:put
 (setf (slot-value this 'my-property)
 (svref args 0)))))
 ((equal method-name "MyMethod")
 (format t "MyMethod was called~%"))
 (t (call-next-method))))

See also

define-dispinterface-method

create-instance-with-events Function

Summary

A convenience function which combines create-instance and set-i-dispatch-event-handler.

Package

com

Signature

create-instance-with-events clsid event-handler &rest args &key event-object => interface, sinks

Arguments

clsid⇓ A string or a refguid giving a CLSID to create.

event-handler⇓ A function of four arguments.

args⇓ Lisp objects.

event-object⇓ A Lisp object.

4 Automation Reference Entries

93

Values

interface⇓ An i-dispatch interface.

sinks⇓ A list of objects representing the connections made.

Description

The function create-instance-with-events is a convenience function which starts an i-dispatch interface and sets
an event handler.

It first calls create-instance with clsid and all the keyword arguments in args except :event-object. clsid defaults the
create-instance argument riid to the value i-dispatch.

It then calls set-i-dispatch-event-handler on the resulting interface, passing event-handler, event-object and clsid (as
the coclass).

interface is the interface started, and sinks is the result of set-i-dispatch-event-handler.

Examples

(example-edit-file "com/automation/events/ie-events")

See also

create-instance
set-i-dispatch-event-handler

create-object Function

Summary

Create an instance of a coclass.

Package

com

Signature

create-object &key clsid progid clsctx => interface-ptr

Arguments

clsid⇓ A string giving a CLSID to create.

progid⇓ A string giving a ProgID to create.

clsctx⇓ A CLSCTX value, which defaults to CLSCTX_SERVER.

Values

interface-ptr An i-dispatch interface pointer.

4 Automation Reference Entries

94

Description

The function create-object creates an instance of a coclass and returns its i-dispatch interface pointer. The coclass
can be specified directly by supplying clsid or indirectly by supplying progid, which will locate the CLSID from the registry.

clsctx indicate the execution contexts in which an object is to be run. It defaults to CLSCTX_SERVER.

Notes

You must initialize the COM runtime before calling create-object (see 1.4 Initializing the COM runtime).

Examples

The following are equivalent ways of creating an Microsoft Word application object:

(create-object :progid "Word.Application.8")

(create-object
 :clsid "000209FF-0000-0000-C000-000000000046")

See also

with-coclass

define-automation-collection Macro

Summary

Defines an implementation class for an Automation component that supports the Collection protocol.

Package

com

Signature

define-automation-collection class-name ({superclass-name}*) ({slot-specifier}*) {class-option}*

Arguments

class-name⇓ A symbol naming the class to define.

superclass-name⇓ A symbol naming a superclass to inherit from.

slot-specifier⇓ A slot description as used by defclass.

class-option⇓ An option as used by defclass.

Description

The macro define-automation-collection defines a standard-class named by class-name which is used to
implement an Automation component that supports the Collection protocol. Normal defclass inheritance rules apply for
slots and Lisp methods.

4 Automation Reference Entries

95

http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

Each superclass-name argument specifies a direct superclass of the new class, which can be any standard-class provided
that standard-automation-collection is included somewhere in the overall class precedence list. This standard class
provides a framework for the collection class.

slot-specifiers are standard defclass slot definitions.

class-options are standard defclass options. In addition the following options are recognized:

(:interface interface-name)

This option is required. The component will implement the interface-name, which must be an
Automation Collection interface, containing (at least) the standard properties Count and
_NewEnum. The macro will define an implementation of these methods using information from
the instance of the class to count and iterate.

(:item-method item-method-name*)

When specified, a COM method named item-method-name will be defined that will look up
items using the item-lookup-function from the instance.

If not specified, the method will be called Item. For Collections which do not have an item
method, pass nil as the item-method-name.

Examples

See also

define-automation-component
standard-automation-collection

define-automation-component Macro

Summary

Define an implementation class for a particular Automation component.

Package

com

Signature

define-automation-component class-name ({superclass-name}*) ({slot-specifier}*) {class-option}*

Arguments

class-name⇓ A symbol naming the class to define.

superclass-name⇓ A symbol naming a superclass to inherit from.

slot-specifier⇓ A slot description as used by defclass.

class-option⇓ An option as used by defclass.

4 Automation Reference Entries

96

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm

Description

The macro define-automation-component defines a standard-class which is used to implement an Automation
component. Normal defclass inheritance rules apply for slots and Lisp methods.

Each superclass-name argument specifies a direct superclass of the new class, which can be any standard-class provided
that certain standard classes are included somewhere in the overall class precedence list. These standard classes depend on
the other options and provide the default superclass list if none is specified. The following standard classes are available:

• standard-i-dispatch is always needed and provides a complete implementation of the i-dispatch interface,
based on the type information in the type library.

• standard-i-connection-point-container is needed if there are any source interfaces specified (via the
:coclass or :source-interfaces options). This provides a complete implementation of the Connection Point
protocols.

slot-specifiers are standard defclass slot definitions.

class-options are standard defclass options. In addition the following options are recognized:

(:coclass coclass-name)

coclass-name is a symbol specifying the name of a coclass. If this option is specified then a class
factory will be registered for this coclass, to create an instance of class-name when another
application requires it. The component will implement the interfaces specified in the coclass
definition and the default interface will be returned by the class factory.

Exactly one of :coclass and :interfaces must be specified.

(:interfaces interface-name*)

Each interface-name specifies an Automation interface that the object will implement. The
i-unknown and i-dispatch interfaces should not be specified because their implementations
are automatically inherited from standard-i-dispatch. No class factory will be registered
for class-name, so the only way to make instances is from with Lisp by calling make-instance.

Exactly one of :coclass and :interfaces must be specified.

(:source-interfaces interface-name*)

Each interface-name specifies a source interface on which the object allows connections to be
made. If the :coclass option is also specified, then the interfaces flagged with the source
attribute are used as the default for the :source-interfaces option.

When there are event interfaces, the component automatically implements the
IConnectionPointContainer interface. The supporting interfaces
IEnumConnectionPoints, IConnectionPoint and IEnumConnections are also provided
automatically.

(:extra-interfaces interface-name*)

Each interface-name specifies a COM interface that the object will implement, in addition to the
interfaces implied by the :coclass option. This allows the object to implement other interfaces
not mentioned in the type library.

(:coclass-reusable-p reusable)

4 Automation Reference Entries

97

http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_std_cl.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/m_defcla.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ins.htm

If reusable is true (the default), then the server running the component can receive requests from
more than one application. If reusable is nil, then the server will receive requests only from the
application that started it and the Operating System will start a new instance of the server if
required. For more details, see REGCLS_MULTIPLEUSE and REGCLS_SINGLEUSE in MSDN.

(:type-library type-library-name)

type-library-name is a symbol specifying the name of a type library, mapped from the name
given by the "library" statement in the IDL. If this option is specified then an error is signaled if
the names used in the :coclass, :interfaces or :source-interfaces class options are
not defined by type-library-name.

Use define-com-method, define-dispinterface-method or com-object-dispinterface-invoke to define
methods in the interfaces implemented by the component. See also 1.9.4 Unimplemented methods.

Examples

(define-automation-component c-test-suite-1 ()
 ((prop3 :initform nil)
 (interface-4-called :initform nil))
 (:coclass test-suite-component)
)

See also

define-com-method
define-dispinterface-method
com-object-dispinterface-invoke
standard-i-dispatch
standard-i-connection-point-container
define-automation-collection

define-dispinterface-method Macro

Summary

Defines a dispinterface method.

Package

com

Signature

define-dispinterface-method method-spec (class-spec . lambda-list) {form}* => value

method-spec ::= method-name | (interface-name method-name)

class-spec ::= (this class-name)

Arguments

method-spec⇓ Specifies the method to be defined.

4 Automation Reference Entries

98

class-spec Specifies the implementation class and variables bound to the object with in forms.

lambda-list⇓ A simple lambda list. That is, a list of parameter names.

form⇓ Forms which implement the method. The value of the final form is returned as the result
of the method.

method-name⇓ A symbol naming the method to define.

interface-name⇓ A symbol naming the interface of the method to define. This is only required if the
implementation class class-name has more than one method with the given method-name.

this⇓ A symbol which will be bound to the COM object whose method is being invoked.

class-name⇓ A symbol naming the COM implementation class for which this method is defined.

Values

value⇓ The value to be returned to the caller.

Description

The macro define-dispinterface-method defines a dispinterface method that implements the method method-name for
the Automation implementation class class-name. The extended method-spec syntax containing interface-name is required if
class-name implements more than one interface with a method called method-name (analogous to the C++ syntax
InterfaceName::MethodName).

When the method is called, each form is evaluated in a lexical environment containing the following bindings.

The symbol this is bound to the instance of the Automation implementation class on which the method is being invoked.

The number of parameter in lambda-list must match the declaration in the type library. Each in and in-out parameter is bound
to the value passed to IDispatch::Invoke, converted to the type specified by the method declaration and then converted
to Lisp objects as specified in 3.3.3 Data conversion when calling Automation methods. For missing values the value of
the parameter is :not-found. For a parameter marked with the vararg attribute, the value will be an array of the values
passed in the call. For out and in-out arguments, the corresponding parameter should be set by the forms to contain the value
to be returned to the caller and will be converted to an automation value as specified in 3.3.3 Data conversion when calling
Automation methods.

value should be a value which can be converted to the appropriate return type as the primary value of the method and will be
converted to an automation value as specified in 3.3.3 Data conversion when calling Automation methods. It is ignored for
methods that are declared as returning void.

Notes

The define-com-method macro should be used to implement methods in dual interfaces.

See also

define-com-method
com-object-dispinterface-invoke

4 Automation Reference Entries

99

disconnect-standard-sink Function

Summary

Releases a standard sink object, stopping the events.

Package

com

Signature

disconnect-standard-sink sink => result

Arguments

sink⇓ A standard sink object.

Values

result⇓ t or nil.

Description

The function disconnect-standard-sink releases a standard sink object. This is one of the objects in the list returned by
set-i-dispatch-event-handler which represents a connection it made.

disconnect-standard-sink stops the events that pass through sink.

result is t if the sink was released.

See also

create-instance-with-events
set-i-dispatch-event-handler

do-collection-items Macro

Summary

Iterates over the items of an Automation Collection.

Package

com

Signature

do-collection-items (item collection) form*

4 Automation Reference Entries

100

Arguments

item⇓ A symbol bound to each item in the collection in turn.

collection⇓ A form which is evaluated to yield a COM i-dispatch interface pointer that implements
the collection protocol.

form⇓ A form to be evaluated.

Description

The macro do-collection-items executes each form in turn, with item bound to each item of collection.

Note that for collections whose items are interface pointers, forms must arrange for each pointer to be released when no
longer needed.

collection should be a COM interface pointer for an i-dispatch interface that implements the Collection protocol. The
items are converted to Lisp as specified in 3.3.3 Data conversion when calling Automation methods.

Examples

For example, to iterate over the Table objects from the Tables collection of a MyDocument interface pointer:

(with-temp-interface (tables)
 (call-dispatch-get-property
 (doc my-document tables))
 (do-collection-items (table tables)
 (inspect-the-table table)
 (release table)))

See also

call-dispatch-method

do-connections Macro

Summary

Iterates over the sinks for a given Automation component object.

Package

com

Signature

do-connections ((sink interface-name &key dispatch automation-dispatch) container) {form}*

Arguments

sink⇓ A symbol which will be bound to each sink interface pointer.

interface-name⇓ A symbol naming the sink interface.

dispatch⇓ A symbol which will be bound to a local macro that invokes a method from the sink
interface as if by with-com-interface.

4 Automation Reference Entries

101

automation-dispatch⇓ A symbol which will be bound to a local macro that invokes a method from the sink
interface as if by with-dispatch-interface.

container⇓ An instance of a component class that has interface-name as one of its source interfaces.

form⇓ A form to be evaluated.

Description

The macro do-connections provides a way to iterate over all the sink interface pointers for the source interface interface-
name in the connection point container container.

container must be a subclass of standard-i-connection-point-container.

Each form is evaluated in turn with sink bound to each interface pointer.

If dispatch is given, it is defined as a local macro invoking the COM interface interface-name as if by
with-com-interface.

If automation-dispatch is given, it is defined as a local macro invoking the Automation interface interface-name as if by
with-dispatch-interface.

Within the scope of do-connections you can call the local function discard-connection which discards the connection
currently bound to sink. This is useful when an error is detected on that connection, for example when the client has
terminated. The signature of this local function is:

discard-connection &key release

release is a boolean defaulting to false. If release is true then release is called on sink.

Examples

Suppose there is a source interface i-clonable-events with a method on-cloned. The following function can be used to
invoke this method on all the sinks of an instance of a clonable-component class:

(defun fire-on-cloned (clonable-component)
 (do-connections ((sink i-clonable-events
 :dispatch call-clonable)
 clonable-component)
 (call-clonable on-cloned value)))

See also

with-dispatch-interface
with-com-interface
standard-i-connection-point-container

find-component-tlb Function

Summary

Returns the path of the type library associated with a component name.

4 Automation Reference Entries

102

Package

com

Signature

find-component-tlb name &key version min-version max-version => path

Arguments

name⇓ A string.

version⇓ A string or nil.

min-version⇓ A string or nil.

max-version⇓ A string or nil.

Values

path A string or nil.

Description

The function find-component-tlb returns the path of the type library associated with the component name.

name should be the name of a component (either a ProgID or a GUID).

If version is supplied, find-component-tlb finds only this version of the type library.

If min-version or max-version, or both of these, are supplied, they restrict which version of the type library can be found.

Each of version, min-version and max-version, if supplied, should be a string. The string should contain either one
hexadecimal number or two hexadecimal numbers separated by a dot. The first number is the major version, the second is the
minor version, which defaults to 0.

If version is not supplied, then find-component-tlb preferentially finds the the library version specified in the registry for
the component (if any) if it fits the specification by max-version and/or min-version, otherwise it finds the earliest version in
the range specified by min-version and max-version.

find-component-tlb returns nil if it fails to find the type library within the specified version constraints.

See also

:midl-type-library-file

find-component-value Function

Summary

Searches the registry for values associated with a component.

Package

com

4 Automation Reference Entries

103

Signature

find-component-value name key-name => result, root

Arguments

name⇓ A string.

key-name⇓ A string or a keyword.

Values

result⇓ A Lisp object.

root⇓ A keyword.

Description

The function find-component-value searches the Windows registry for values associated with a component.

name should be the name of a component (either a ProgID or a GUID).

key-name should name a registry key. If it is a string, it should match the key name in the registry. Otherwise key-name can
be one of the following keywords:

:library Returns the library that implements the component (if any).

:inproc-server32 As for :library.

:local-server32 Returns the executable that implements the component (if any).

:version Returns the version.

:prog-id Returns the ProgID.

:version-independent-prog-id

Returns the version-independent ProgId.

:type-lib Returns the GUID of the type library.

find-component-value returns the value result associated with the given key-name in the registry for component name. If
a value is found., then there is a second returned value root which is either :local-machine or :user, indicating the
branch of the registry in which the value was found.

find-component-value simply returns nil if it fails to find the information.

When running on 64-bit Windows, 32-bit LispWorks looks in the 32-bit registry view and 64-bit LispWorks looks in the 64-
bit registry view. LispWorks does not change the registry reflection settings.

Examples

(com:find-component-value "shell.explorer" :version)

4 Automation Reference Entries

104

get-active-object Function

Summary

Looks for a registered running instance of a coclass.

Package

com

Signature

get-active-object &key clsid progid riid errorp => interface-ptr

Arguments

clsid⇓ A string or a refguid giving a CLSID to create.

progid⇓ A string giving a ProgID to create.

riid⇓ An optional refiid giving the COM interface name to return.

errorp⇓ A boolean. The default is t.

Values

interface-ptr A COM interface pointer for riid.

Description

The function get-active-object looks for a registered running instance of a coclass in the system Running Object Table
and returns its riid interface pointer if any. If riid is nil, then i-unknown is used.

The coclass can be specified directly by supplying clsid or indirectly by supplying progid, which will locate the CLSID from
the registry.

If errorp is true, then an error is signaled if no instances are running. Otherwise nil is returned if no instances are running.

Examples

(get-active-object :progid "Excel.Application"
 :riid 'i-dispatch)

See also

get-object

4 Automation Reference Entries

105

get-error-info Function

Summary

Retrieves the error information for the current Automation method.

Package

com

Signature

get-error-info &key errorp fields => field-value*

Arguments

errorp⇓ A boolean.

fields⇓ A list of keywords specifying the error information fields to return.

Values

field-value* Values corresponding to fields.

Description

The function get-error-info allows the various components of the error information to be retrieved for the last
Automation method called. fields should be a list of the following keywords, to specify which fields of the error information
should be returned:

:iid A refguid object.

:source A string specifying the ProgID.

:description A string describing the error.

:help-file A string giving the help file's path.

:help-context An integer giving the help context id.

A field-value will be returned for each field specified. The field-value will be nil if the field is does not have a value.

If errorp is true and an error occurs while retrieving the error information, then an error of type com-error is signaled.
Otherwise nil is returned.

Examples

(multiple-value-bind (source description)
 (get-error-info :fields '(:source :description))
 (error "Failed with '~A' in ~A" description source))

See also

set-error-info

4 Automation Reference Entries

106

call-dispatch-method
com-error

get-i-dispatch-name Function

Summary

Returns the foreign name of an i-dispatch interface.

Package

com

Signature

get-i-dispatch-name i-dispatch => name

Arguments

i-dispatch⇓ An i-dispatch interface.

Values

name A string.

Description

The function get-i-dispatch-name returns the foreign name of i-dispatch. That is, it obtains the first return value of
ITypeInfo::GetDocumentation.

Examples

To implement code like this:

If TypeOf objMap.Selection Is Pushpin Then
...

you would need something like:

(if (equalp (com:get-i-dispatch-name selection)
 "PushPin")
 ...)

See also

print-i-dispatch-methods
i-dispatch
create-object
create-instance-with-events
3.2 Starting a remote Automation server

4 Automation Reference Entries

107

get-i-dispatch-source-names Function

Summary

Returns the source names associated with an i-dispatch interface.

Package

com

Signature

get-i-dispatch-source-names i-dispatch &key all coclass => source-names

Arguments

i-dispatch⇓ An i-dispatch interface.

all⇓ A generalized boolean, default value false.

coclass⇓ The coclass to use, or nil.

Values

source-names⇓ A list.

Description

The function get-i-dispatch-source-names returns the source names that are associated with the i-dispatch
interface i-dispatch, which will be used by set-i-dispatch-event-handler.

coclass and all are as described for set-i-dispatch-event-handler.

Notes

If you need to call set-i-dispatch-event-handler repeatedly, then it is most efficient to call
get-i-dispatch-source-names once and pass the result source-names to set-i-dispatch-event-handler. This is
because set-i-dispatch-event-handler itself calls get-i-dispatch-source-names if its source-names argument
is nil.

See also

set-i-dispatch-event-handler

i-dispatch COM Interface Type

Summary

The Lisp name for the IDispatch COM interface.

4 Automation Reference Entries

108

Package

com

Description

The COM interface type i-dispatch is the name given to the IDispatch COM interface within Lisp. The name results
from the standard mapping described in 1.3 The mapping from COM names to Lisp symbols.

Examples

(query-interface ptr 'i-dispatch)

See also

i-unknown
standard-i-dispatch

interface-connect Function

Summary

Connects a sink interface pointer to the source of events in another COM interface pointer.

Package

com

Signature

interface-connect interface-ptr iid sink-ptr &key errorp => cookie

Arguments

interface-ptr⇓ A COM interface pointer that provides the source interface iid.

iid⇓ The iid of the source interface to be connected. The iid can be a symbol naming the
interface or a refguid foreign pointer.

sink-ptr⇓ A COM interface that will receive the events for iid.

errorp⇓ A boolean.

Values

cookie An integer cookie associated with this connection.

Description

The function interface-connect connects the COM interface sink-ptr to the connection point in interface-ptr that is
named by iid.

If errorp is false, errors connecting sink-ptr will cause nil to be returned. Otherwise an error of type com-error will be
signaled.

4 Automation Reference Entries

109

Examples

Suppose there is an interface pointer clonable which provides a source interface i-clonable-events, then the following
form can be used to connect an implementation of this source interface sink:

(setq cookie
 (interface-connect clonable
 'i-clonable-events
 sink))

See also

interface-disconnect
refguid
com-error

interface-disconnect Function

Summary

Disconnect a sink interface pointer from the source of events in another COM interface pointer.

Package

com

Signature

interface-disconnect &key interface-ptr iid cookie &key errorp => flag

Arguments

interface-ptr⇓ A COM interface pointer that provides the source interface iid.

iid⇓ The iid of the source interface to be disconnected. The iid can be a symbol naming the
interface or a refguid foreign pointer.

cookie⇓ The integer cookie associated with the connection to be disconnected.

errorp⇓ A boolean.

Values

flag A boolean, true for successful disconnection.

Description

The function interface-disconnect disconnects the connection cookie from the connection point in interface-ptr that
matches iid.

If errorp is false, errors disconnecting cookie will cause nil to be returned. Otherwise an error of type com-error will be
signaled.

4 Automation Reference Entries

110

Examples

Suppose there is an interface pointer clonable which provides a source interface i-clonable-events, then the following
form can be used to disconnect an implementation of this source interface with cookie cookie:

(interface-disconnect clonable
 'i-clonable-events
 cookie)

See also

interface-connect
refguid
com-error

invoke-dispatch-get-property Function

Summary

Call a dispatch property getter method from an interface pointer.

Package

com

Signature

invoke-dispatch-get-property dispinterface-ptr name &rest args => value*

Arguments

dispinterface-ptr⇓ An Automation interface pointer.

name⇓ A string or integer.

args⇓ Arguments passed to the method.

Values

value*⇓ Values returned by the method.

Description

The function invoke-dispatch-get-property is used to invoke an Automation property getter method from Lisp
without needing to compile a type library as part of the application. This is similar to using:

Dim var as Object
Print #output, var.Prop

in Microsoft Visual Basic and contrasts with the macro call-dispatch-get-property which requires a type library to be
compiled.

dispinterface-ptr should be a COM interface pointer for the i-dispatch interface.

The appropriate Automation method, chosen using name, which is either a string naming the method or the integer id of the

4 Automation Reference Entries

111

method.

args are converted to Automation values and are passed as the method's in and in-out parameters in the order in which they
appear. The returned values in value* consist of the primary value of the method (if not void) and the values of any out or in-
out parameters. See 3.3.3 Data conversion when calling Automation methods for more details.

There is also setf expander for invoke-dispatch-get-property, which can be used as an alternative to the
call-dispatch-put-property macro.

Examples

For example, in order to get and set the Width property of an interface pointer in the variable doc:

(invoke-dispatch-get-property doc "Width")
(setf (invoke-dispatch-get-property
 doc "Width")
 10)

See also

invoke-dispatch-method
invoke-dispatch-put-property
call-dispatch-get-property

invoke-dispatch-method Function

Summary

Call a dispatch method from an interface pointer.

Package

com

Signature

invoke-dispatch-method dispinterface-ptr name &rest args => value*

Arguments

dispinterface-ptr⇓ An Automation interface pointer.

name⇓ A string or integer.

args⇓ Arguments passed to the method.

Values

value*⇓ Values returned by the method.

Description

The function invoke-dispatch-method is used to invoke an Automation method from Lisp without needing to compile a
type library as part of the application. This is similar to using:

4 Automation Reference Entries

112

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Dim var as Object
var.Method(1,2)

in Microsoft Visual Basic and contrasts with the macro call-dispatch-method which requires a type library to be
compiled.

dispinterface-ptr should be a COM interface pointer for the i-dispatch interface.

The appropriate Automation method, chosen using name, which is either a string naming the method or the integer id of the
method.

args are converted to Automation values and are passed as the method's in and in-out parameters in the order in which they
appear. The returned values in value* consist of the primary value of the method (if not void) and the values of any out or in-
out parameters. See 3.3.3 Data conversion when calling Automation methods for more details. If there is no Automation
method with the given name, then a property getter with the same name is called if it exists, otherwise an error is signaled.
The setf form of invoke-dispatch-method can be used to call property setter methods.

Examples

For example, in order to invoke the ReFormat method of an interface pointer in the variable doc:

(invoke-dispatch-method doc "ReFormat")

See also

invoke-dispatch-get-property
invoke-dispatch-put-property
call-dispatch-method

invoke-dispatch-put-property Function

Summary

Call a dispatch property setter method from an interface pointer.

Package

com

Signature

invoke-dispatch-put-property dispinterface-ptr name &rest args => value*

Arguments

dispinterface-ptr⇓ An Automation interface pointer.

name⇓ A string or integer.

args⇓ Arguments passed to the method.

Values

value*⇓ Values returned by the method.

4 Automation Reference Entries

113

http://www.lispworks.com/documentation/HyperSpec/Body/a_setf.htm

Description

The function invoke-dispatch-put-property is used to invoke an Automation property setter method from Lisp
without needing to compile a type library as part of the application. This is similar to using:

Dim var as Object
var.Prop = 2

in Microsoft Visual Basic and contrasts with the macro call-dispatch-put-property which requires a type library to be
compiled.

dispinterface-ptr should be a COM interface pointer for the i-dispatch interface.

The appropriate Automation method, chosen using name, which is either a string naming the method or the integer id of the
method.

args are converted to Automation values and are passed as the method's in and in-out parameters in the order in which they
appear. The new value of the property should be the last argument. The returned values in value* consist of the primary value
of the method (if not void) and the values of any out or in-out parameters. See 3.3.3 Data conversion when calling
Automation methods for more details.

Examples

For example, in order to set the Width property of an interface pointer in the variable doc:

(invoke-dispatch-put-property doc "Width" 10)

See also

invoke-dispatch-method
invoke-dispatch-get-property
call-dispatch-put-property

lisp-variant System Class

Summary

An object that contains a type and a value.

Package

com

Superclasses

t

Accessors

lisp-variant-type
lisp-variant-value

4 Automation Reference Entries

114

Description

Instances of the system class lisp-variant contains a type and a value, which are described for the function
set-variant.

See also

make-lisp-variant
set-variant

make-lisp-variant Function

Summary

Returns a Lisp object that contains a type and a value.

Package

com

Signature

make-lisp-variant type &optional value => lisp-variant

Arguments

type⇓ A keyword.

value⇓ A Lisp object.

Values

lisp-variant⇓ A lisp-variant.

Description

The function make-lisp-variant returns a lisp-variant object lisp-variant containing type and value.

lisp-variant can be passed as an argument to an Automation method, to give control over the VT code that the method sees.
The meaning of type and value are as described for set-variant.

See also

lisp-variant
set-variant

4 Automation Reference Entries

115

:midl-type-library-file Defsystem Member Type

Summary

A defsystem member type that can be used to include a type library file in a Lisp system definition.

Package

com

Description

When a file is given the defsystem member type :midl-type-library-file, compiling the system will compile the type
library file to produce a fasl. Loading the system will load this fasl. The :package and :mapping-options keywords can
specified as for midl.

The keyword :component-name name-spec can be supplied to specify that the source is the library specified by name-spec.

name-spec should be one of:

t Means that the component name is the same as the module name.

A string The name of the component.

A list (component-name keywords-and-values) where the keywords and values are passed to
find-component-tlb when looking for the actual library.

In all cases the module name, less anything after the last dot, is used as the default filename for the compiled file.

The keyword :com can be supplied to reduce the amount of code generated. For the details, see 3.1.3 Reducing the size of
the converted library.

Examples

To include the file myfile.tlb in a system, use:

(defsystem my-system ()
 :members (("myfile.tlb"
 :type :midl-type-library-file)))

To compile the library associated with "OWC10.Spreadsheet", producing an object file in OWC10.ofasl put a clause like
this in the defsystem form:

("OWC10.SPREADSHEET" :type :midl-type-library-file
 :com :not-binary
 :component-name t)

To compile the same library, but to a different object file, use:

("my-owc" :type :midl-type-library-file
 :com :not-binary
 :component-name "OWC10.SPREADSHEET")

To compile the same library, but using only version newer than 1.1, use a clause like this:

4 Automation Reference Entries

116

("my-owc" :type :midl-type-library-file
 :com :not-binary
 :component-name ("OWC10.SPREADSHEET"
 :min-version "1.1"))

See also

find-component-tlb
:midl-file

print-i-dispatch-methods Function

Summary

Prints the defined methods for an i-dispatch.

Package

com

Signature

print-i-dispatch-methods i-dispatch &optional arguments-p

Arguments

i-dispatch⇓ An i-dispatch interface object.

arguments-p⇓ A boolean.

Description

The function print-i-dispatch-methods prints the methods that are defined for the i-dispatch i-dispatch.

print-i-dispatch-methods tries to get the information about the methods of i-dispatch and print them in a readable
format. If arguments-p is nil then for each each method it prints its name, followed by the invocation type(s) inside curly
brackets. Invocation types are:

"Method" Invoked by invoke-dispatch-method.

"Get" Invoked by invoke-dispatch-get-property.

"Put", "Putref" Invoked by invoke-dispatch-put-property.

If arguments-p is true, print-i-dispatch-methods also prints the types of the arguments for each method. The type of
each argument is shown as a plain string followed by the name of the VT_… constant delimited by curly brackets. The type
may be preceded by:

By reference Means the argument has VT_BYREF. The argument in that is passed in Lisp should be the actual
type. By reference argument values are returned as multiple values, following the return value of
the method if it has one.

Array of Means it got VT_ARRAY. The argument in Lisp should be an array.

Array of references Means it got VT_ARRAY and VT_BYREF. The argument needs to be an array of the actual type.

4 Automation Reference Entries

117

The default value of arguments-p is nil.

Notes

1. print-i-dispatch-methods gives only partial information, and is therefore useful only for the simple methods
where it is pretty obvious what the arguments are. If the arguments are not obvious, you will need to read the actual
documentation.

2. The type Variant means any type, but note that the method may accept only specific types even if the argument is variant.

See also

get-i-dispatch-name
i-dispatch
invoke-dispatch-put-property
invoke-dispatch-get-property
invoke-dispatch-method
3.3.2 Calling Automation methods without a type library

query-simple-i-dispatch-interface Function

Summary

Queries the interface pointer from a simple-i-dispatch object using the type information from another interface.

Package

com

Signature

query-simple-i-dispatch-interface this &key related-dispatch => interface-ptr, refguid

Arguments

this⇓ A simple-i-dispatch object.

related-dispatch⇓ An i-dispatch interface pointer.

Values

interface-ptr⇓ An interface pointer.

refguid⇓ A refguid.

Description

The function query-simple-i-dispatch-interface is used to obtain an interface pointer from a
simple-i-dispatch interface. The simple-i-dispatch contains the interface name provided using its
:interface-name initarg, but it does not have the details of this interface, so query-simple-i-dispatch-interface

must be able to find the details.

In the current implementation, the only way for the details to be found is by supplying related-dispatch. This should be an
interface pointer from which type information about the interface name can be obtained.

4 Automation Reference Entries

118

The query-simple-i-dispatch-interface function returns two values, interface-ptr which is an interface pointer for
the interface-name contained in this and refguid, which is the refguid of that interface-name.

A typical use of query-simple-i-dispatch-interface is to implement a sink interface for events from some other
component. The interface pointer for that component is passed as related-dispatch because that connects to the type library
containing both interface definitions.

Before using query-simple-i-dispatch-interface directly, consider the functions
set-i-dispatch-event-handler and create-instance-with-events, which provide an succinct way to provide an
event callback.

See also

simple-i-dispatch
create-instance-with-events
set-i-dispatch-event-handler

register-active-object Function

Summary

Registers an instance of a coclass.

Package

com

Signature

register-active-object interface-ptr &key clsid progid flags => token

Arguments

interface-ptr⇓ A COM interface pointer.

clsid⇓ A string or a refguid giving a CLSID to create.

progid⇓ A string giving a ProgID to create.

flags⇓ An integer.

Values

token⇓ An integer.

Description

The function register-active-object registers interface-ptr in the system Running Object Table for a specific coclass
that the application implements. The coclass can be specified directly by supplying clsid or indirectly by supplying progid,
which will locate the CLSID from the registry.

flags can be an integer as specified for the Win32 API function RegisterActiveObject. The default value of flags is 0.

The returned value token can be used with revoke-active-object to revoke the registration.

4 Automation Reference Entries

119

See also

revoke-active-object

revoke-active-object Function

Summary

Unregisters a previously registered instance of a coclass.

Package

com

Signature

revoke-active-object token

Arguments

token⇓ An integer.

Description

The function revoke-active-object revokes the registration of the object associated with token in the system Running
Object Table. The value of token should be one that was returned by a call to register-active-object.

See also

register-active-object

set-error-info Function

Summary

Sets the error information for the current Automation method.

Package

com

Signature

set-error-info &key iid source description help-file help-context => error-code

Arguments

iid⇓ nil, a symbol naming a COM interface or a refguid foreign pointer.

source⇓ A string or nil.

description⇓ A string or nil.

4 Automation Reference Entries

120

help-file⇓ A string or nil.

help-context⇓ An integer or nil.

Values

error-code The error code DISP_E_EXCEPTION or nil if the error info could not be set.

Description

The function set-error-info allows the various components of the error information to be set for the current Automation
method. It should only be called within the dynamic scope of the body of a define-com-method definition. The value
DISP_E_EXCEPTION can be returned as the hresult of the method to indicate failure.

If iid is non-nil, it is set as IID of the interface that defined the error, or nil if none.

If source is non-nil, it is set as the ProgID for the class that raised the error.

If description is non-nil, it is set as the textual description of the error.

If help-file is non-nil, it is set as the path of the help file that describes the error.

If help-context is non-nil, it is set as the help context id for the error.

Examples

(define-com-method (i-robot rotate)
 ((this i-robot-impl)
 (axis :in)
 (angle-delta :in))
 (let ((joint (find-joint axis)))
 (if joint
 (progn
 (rotate-joint joint)
 S_OK)
 (set-error-info :iid 'i-robot
 :description "Bad joint."))))

See also

define-com-method
get-error-info
refguid
hresult

set-i-dispatch-event-handler Function

Summary

Sets an event handler for an i-dispatch interface.

Package

com

4 Automation Reference Entries

121

Signature

set-i-dispatch-event-handler (interface event-handler &key all coclass event-object source-names) => sinks

Arguments

interface⇓ An i-dispatch interface.

event-handler⇓ A function of four arguments.

all⇓ A generalized boolean, default value false.

coclass⇓ The coclass to use, or nil.

event-object⇓ A Lisp object.

source-names⇓ A list of "source" interface names, or nil.

Values

sinks⇓ A list of objects representing the connections made.

Description

The function set-i-dispatch-event-handler sets an event handler for the i-dispatch interface interface.

event-handler is a function with the following signature:

event-handler event-obj method-name method-type args

event-obj is the value of event-object if this is non-nil. If event-object is nil, event-obj is the value of interface.

method-name is the method-name that has been called, which is the same as the "event" name in Visual Basic terminology.

method-type is the type of the method. For a normal "event" it is :method. method-type can also be :put or :get if the
underlying "source" interface has "propput" or "propget" methods or properties.

args is an array containing the arguments to the method ("event"). This varies according to the method. For out or in-out
arguments, it is possible to return a value by setting the corresponding value in the array.

all, coclass and source-names tell set-i-dispatch-event-handler which "source" interface or interfaces to use. In
most cases, the default is correct.

If all is false, then only the "default" "source" is used. If all is true, then set-i-dispatch-event-handler uses all the
source interfaces that the coclass defines.

coclass tells set-i-dispatch-event-handler which coclass to use, which is the same as the object in Visual Basic
terminology.

If coclass is nil, it uses the first coclass in the type library that has the type of interface as a default interface, or if there is no
such coclass, the first coclass that has this interface. In most of the cases this is the desired coclass.

If coclass is non-nil, it specifies which coclass to use. It can be a ProgID (for example "Word.Application") or a coclass
name or a coclass GUID. If the i-dispatch interface was created with create-instance, then the argument to
create-instance is the correct coclass to use.

If source-names is non-nil, then it is a list of "source" interface names to use, and all and coclass are ignored. If source-
names is nil, then set-i-dispatch-event-handler calls get-i-dispatch-source-names to calculate the "source"
interface names.

sinks is a list of objects representing the connections that set-i-dispatch-event-handler made. When the events are

4 Automation Reference Entries

122

no longer needed, they can be released by disconnect-standard-sink.

Notes

1. set-i-dispatch-event-handler can be called more than once on the same i-dispatch, and this generates new
connections each time. Therefore, if it is called more than once such that it uses the same source names, events will
arrive more than once.

2. If you need to call set-i-dispatch-event-handler repeatedly, then it is most efficient to call
get-i-dispatch-source-names once and pass the result source-names to set-i-dispatch-event-handler.

3. There is a useful function create-instance-with-events which combines create-instance and
set-i-dispatch-event-handler.

See also

disconnect-standard-sink
create-instance-with-events
get-i-dispatch-source-names

set-variant Function

Summary

Sets the fields in a VARIANT pointer.

Package

com

Signature

set-variant variant type &optional value

Arguments

variant⇓ A foreign pointer to an object of type VARIANT.

type⇓ A keyword specifying the type of value.

value⇓ The value to store in variant.

Description

The function set-variant can be used to set the type and value of a VARIANT object. It is useful if the default type
provided by the automatic conversion for VARIANT return values is incorrect. The value of meaning of type is an specified
below.

Value of type VT code used Expected type of value

4 Automation Reference Entries

123

nil dynamic any suitable

:empty VT_EMPTY ignored

:null VT_NULL ignored

:short VT_I2 integer

:long VT_I4 integer

:float VT_R4 single-float

:double VT_R8 double-float

:cy VT_CY

:date VT_DATE

:bstr VT_BSTR string

:dispatch VT_DISPATCH FLI pointer

:error VT_ERROR ignored

:bool VT_BOOL nil or non nil

:variant VT_VARIANT FLI pointer

:unknown VT_UNKNOWN FLI pointer

:decimal VT_DECIMAL

(:unsigned :char) VT_UI1 integer

(:array . type) VT_BYREF +
VT code for type

array

:array
or (:array array)
or (:array . types)

VT_ARRAY + VT_VARIANT array

(:pointer type2) VT_BYREF +
VT code for type2

FLI pointer

If type is nil then the actual VT code is chosen dynamically according to the Lisp type of value (see Automation types, VT
codes and their corresponding Lisp types).

If type is a cons of the form (:array . type) for some keyword type, then variant is set to contain an array of objects of
type. Each element of value is expected to be suitable for conversion to type.

If type is :array or another list starting with :array then variant is set to contain an array of VARIANT objects with the
same dimensions as value. Each element of value is converted as if by calling set-variant with a type chosen as follows:

• If type is the symbol :array, then nil is passed as the element type.

• If type is of the form (:array array) then array should be an array with the same dimensions as value. The element
type is taken from the corresponding element of array.

• If type is of the form (:array . types) then types should be a suitable value for the :initial-contents argument
to make-array to make an array of types with the same dimensions as value. The element type is taken from the
corresponding element of that array. In particular, if value is a vector of length n then type should be a list of the form
(:array type-1 type-2 ... type-n).

Examples

(set-variant v :null)

4 Automation Reference Entries

124

http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_short_.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_string.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_intege.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm
http://www.lispworks.com/documentation/HyperSpec/Body/t_array.htm
http://www.lispworks.com/documentation/HyperSpec/Body/f_mk_ar.htm
http://www.lispworks.com/documentation/HyperSpec/Body/a_vector.htm

(set-variant v :short 10)

(set-variant v '(:pointer :short) ptr)

(set-variant v '(:array :short :int) #(1 2))

See also

define-com-method

simple-i-dispatch Class

Summary

A complete dynamic implementation of the i-dispatch interface.

Package

com

Superclasses

standard-i-dispatch

Initargs

:interface-name The name of the interface to implement. See query-simple-i-dispatch-interface
for details on how this is used.

:invoke-callback A function that is called with four arguments whenever one of the interface's methods is
invoked. The arguments are the callback object, the method name as a string, the method
type (a keyword :method, :get or :put) and a vector of the method's arguments. The
value returned by the function will be returned to the caller of the method See
com-object-dispinterface-invoke for more details of the method name, type and
arguments.

Accessors

simple-i-dispatch-invoke-callback

Readers

simple-i-dispatch-interface-name
simple-i-dispatch-refguid

Description

The class simple-i-dispatch provides a complete implementation of the i-dispatch interface, without requiring a type
library to be parsed. The type information is obtained at run-time when query-simple-i-dispatch-interface is
called. The class inherits from standard-i-dispatch to provide the i-unknown interface.

The simple-i-dispatch-refguid reader can be used to return the refguid of the interface. This can only be called
after query-simple-i-dispatch-interface has been called.

4 Automation Reference Entries

125

The implementation obtains the callback object argument to the invoke-callback by calling
simple-i-dispatch-callback-object with the simple-i-dispatch object. The default method returns the
simple-i-dispatch object itself, but this method can be overridden for subclasses to return some other object.

Before using simple-i-dispatch directly, consider the functions set-i-dispatch-event-handler and
create-instance-with-events, which provide an succinct way to provide an event callback.

See also

query-simple-i-dispatch-interface
simple-i-dispatch-callback-object
standard-i-dispatch
i-dispatch
capi:ole-control-pane-simple-sink

simple-i-dispatch-callback-object Generic Function

Summary

A generic function that can be implemented to modify the first argument to the invoke-callback in simple-i-dispatch.

Package

com

Signature

simple-i-dispatch-callback-object this => object

Method signatures

simple-i-dispatch-callback-object (this simple-i-dispatch)

Arguments

this⇓ An object of type simple-i-dispatch.

Values

object The callback object to be pass as the first argument to the invoke-callback of this.

Description

The generic function simple-i-dispatch-callback-object is called by the implementation of simple-i-dispatch
to obtain the callback object (first argument) to the invoke-callback of this. This allows the object to be computed in some
way by subclassing simple-i-dispatch and implementing a method on simple-i-dispatch-callback-object

specialized for the subclass.

The pre-defined primary method specializing on simple-i-dispatch always returns its argument.

Examples

When the function my-dispatch-callback below is called, its first argument will be the useful-object passed to
make-my-dispatch.

4 Automation Reference Entries

126

(defclass my-dispatch (simple-i-dispatch)
 ((useful-object :initarg :useful-object)))

(defmethod simple-i-dispatch-callback-object
 ((this my-dispatch))
 (slot-value this 'useful-object))

(defun make-my-dispatch (useful-object)
 (make-instance
 'my-dispatch
 :useful-object useful-object
 :invoke-callback 'my-dispatch-callback
 :interface-name "MyDispatchInterface"))

See also

simple-i-dispatch

standard-automation-collection Class

Summary

A framework for implementing Automation collections.

Package

com

Superclasses

standard-i-dispatch

Initargs

:count-function A function of no arguments that should return the number of items in the collection. This
initarg is required.

:items-function A function of no arguments that should return a sequence of items in the collection. This
function is called by the implementation of _NewEnum and the sequence is copied.
Exactly one of :items-function and :item-generator-function must be
specified.

:item-generator-function

A function of no arguments that should return an item generator, which will generate the
items in the collection. See below for more details. Exactly one of :items-function
and :item-generator-function must be specified.

:data-function A function called on each item that the :items-function or
:item-generator-function returns. This is called when iterating, to produce the
value that is returned to the caller.

:item-lookup-function

A function which takes a single argument, an integer or a string specifying an item. The
function should return the item specified. This initarg is required if the :item-method
option is non-nil in define-automation-collection.

4 Automation Reference Entries

127

Description

The class standard-automation-collection provides a framework for implementing Automation collections. These
typically provide a Count property giving the number of objects in the collect, a _NewEnum property for iterating over the
element of the collection method and optionally an Item method for finding items by index or name.

The :count-function initarg specifies a function to count the items of the collection and is invoked by the implementation
of the Count method.

Exactly one of the initargs :item-function and :item-generator-function must be specified to provide items for the
implementation of the IEnumVARIANT instance returned by the _NewEnum method.

If :items-function is specified, then it will be called once when _NewEnum is called and should return a sequence of the
items in the collection. This sequence is copied, so can be modified by the program without affecting the collection.

If :item-generator-function is specified, it should be an item generator that will generate all the items in the
collection. It will be called once with the argument :clone when _NewEnum is called and then by the implementation of the
resulting IEnumVARIANT interface. An item generator is a function of one argument which specifies what to do:

:next Return two values: the next item and t. If there are no more items, return nil and nil.

:skip If there are no more items, return nil. Otherwise skip the current item and return t.

:reset Reset the generator so the first item will be returned again.

:clone Return a copy of the item generator. The copy should have the same current item.

The :data-function initarg should be function to convert each item returned by the :items-function or the item
generator into a value whose type is compatible with Automation (see Automation types, VT codes and their
corresponding Lisp types). The default function is identity.

Examples

See the example in this directory:

(example-edit-file "com/automation/collections/")

See also

define-automation-collection
standard-i-dispatch
i-dispatch

standard-i-connection-point-container Class

Summary

A complete implementation of the Connection Point protocol.

Package

com

4 Automation Reference Entries

128

http://www.lispworks.com/documentation/HyperSpec/Body/f_identi.htm

Superclasses

standard-i-unknown

Description

The class standard-i-connection-point-container provides a complete implementation of the Connection Point
protocols. It implements the IConnectionPointContainer interface and creates connection points for each interface
given by the :outgoing-interfaces initarg.

If a class defined with define-automation-component macro specifies the :source-interfaces option or has
interfaces with the "source" attribute in its coclass then it must inherit from standard-i-connection-point-container

somehow. define-automation-component passes the appropriate initargs to initialize the class.

The macro do-connections can be used to iterate over the connections (sinks) for a given interface.

Examples

Given the class definition:

(define-automation-component clonable-component ()
 ()
 (:interfaces i-clonable)
 (:source-interfaces i-clonable-events)
)

then:

(typep (make-instance 'clonable-component)
 'standard-i-connection-point-container)
=> t

See also

define-automation-component
standard-i-dispatch
do-connections
define-automation-collection
standard-i-unknown
i-dispatch

standard-i-dispatch Class

Summary

A complete implementation of the i-dispatch interface.

Package

com

Superclasses

standard-i-unknown

4 Automation Reference Entries

129

Subclasses

standard-automation-collection
simple-i-dispatch

Description

The class standard-i-dispatch provides a complete implementation of the i-dispatch interface, based on the type
information in the type library. In addition, the i-support-error-info interface is implemented to support error
information. standard-i-dispatch inherits from standard-i-unknown to provide the i-unknown interface.

All classes defined with the define-automation-component and define-automation-collection macros must
inherit from standard-i-dispatch somehow. These macros pass the appropriate initargs to initialize the class.

Examples

Given the class definition:

(define-automation-component document-impl ()
 ()
 (:coclass document)
)

then:

(typep (make-instance 'document-impl)
 'standard-i-dispatch)
=> t

See also

define-automation-component
define-automation-collection
standard-i-connection-point-container
standard-i-unknown
i-dispatch

with-coclass Macro

Summary

Executes a body of code with a temporary instance of a coclass.

Package

com

Signature

with-coclass disp {form}* => value*

disp ::= (dispatch-function coclass-name &key interface-name punk clsctx)

4 Automation Reference Entries

130

Arguments

disp The names of the dispatch function, coclass and so on.

form⇓ A form to be evaluated.

dispatch-function⇓ A symbol which will be defined as a macro, as if by with-dispatch-interface. The
macro can be used by forms to invoke the Automation methods of the component.

coclass-name⇓ A symbol which names the coclass. It is not evaluated.

interface-name⇓ A symbol naming an interface in the coclass. It is not evaluated.

punk⇓ A symbol which will be bound to the interface pointer.

clsctx⇓ A CLSCTX value, which defaults to CLSCTX_SERVER.

Values

value* The values returned by the last form.

Description

The macro with-coclass calls create-object to make an instance of the coclass named by the symbol coclass-name.

If interface-name is supplied then that interface is queried from the component, otherwise the default interface is queried.

Each form is evaluated in turn with dispatch-function bound of a local macro for invoking methods on the interface, as if by
with-dispatch-interface. After the forms have been evaluated, the interface pointer is released.

If punk is supplied, it will be bound to the interface pointer while the forms are being evaluated.

clsctx indicate the execution contexts in which an object is to be run. It defaults to CLSCTX_SERVER.

Examples

If a type library containing the coclass TestComponent has been converted to Lisp, then following can be used to make an
instance of component and invoke the Greet() method on the default interface.

(with-coclass (call-it test-component)
 (call-it greet "hello"))

See also

create-object

with-dispatch-interface Macro

Summary

Used to simplify invocation of several methods from a particular Automation interface pointer.

Package

com

4 Automation Reference Entries

131

Signature

with-dispatch-interface disp dispinterface-ptr {form}* => value*

disp ::= (dispatch-function dispinterface-name)

Arguments

disp The names of the dispatch function and Automation interface.

dispinterface-ptr⇓ A form which is evaluated to yield a COM i-dispatch interface pointer.

form⇓ A form to be evaluated.

dispatch-function⇓ A symbol which will be defined as a macro, as if by macrolet. The macro can be used
by forms to invoke the methods on dispinterface-ptr.

dispinterface-name⇓ A symbol which names the Automation interface. It is not evaluated.

Values

value* The values returned by the last form.

Description

When the macro with-dispatch-interface evaluates forms, the local macro dispatch-function can be used to invoked
the methods for the Automation interface dispinterface-name, which should be the type or a supertype of the actual type of
the Automation interface pointer dispinterface-ptr.

dispatch-function has the following signature:

dispatch-function method-name arg* => values

where:

method-name A symbol which names the method. It is not evaluated.

arg Arguments to the method (see 3.3.3 Data conversion when calling Automation methods for
details).

values Values from the method (see 3.3.3 Data conversion when calling Automation methods for
details).

Examples

For example, in order to invoke the ReFormat method of a MyDocument interface pointer:

(with-dispatch-interface (call-doc my-document) doc
 (call-doc re-format))

See also

call-dispatch-method

4 Automation Reference Entries

132

http://www.lispworks.com/documentation/HyperSpec/Body/s_flet_.htm

5 Tools

The tools described in this chapter extend the LispWorks IDE to help with debugging applications using COM/Automation.
See the LispWorks IDE User Guide for more details of common operations that can be performed within these tools. The
sections below describe each tool.

5.1 The COM Implementation Browser

The COM Implementation Browser allows prototype code for COM implementation classes to be viewed and created. This is
useful when writing COM methods because it provides a template for the method names and arguments. To start the tool,
choose Tools > Com Implementation Browser from the LispWorks podium.

COM Implementation Browser

133

At the top of the window is a drop down list a class names. Choosing an item from this list will set the contents of the
Description panel to show that class at the root of the tree, with subitems for each COM interface that it implements. The
COM interfaces have subitems for their uuids and methods. The icon used for a method in the tree indicates the status of its
implementation: red means not implemented (see 1.9.4 Unimplemented methods), yellow means inherited from a
superclass (see 1.9.5 Inheritance), red and yellow means an inherited unimplemented method and cyan means a method
implemented directly in the named class.

Selecting an item in the Description pane will display a prototype implementation for that part of the class, using the
appropriate macros for COM and Automation classes.

The New and Edit buttons allow prototype classes to be constructed and modified. Such classes are shown in the list of class
names as Example class... and are not actually defined, but the prototype code can be copied into a file and evaluated to
provide a starting point for an implementation. Clicking New or Edit displays a dialog as shown below.

COM Implementation Wizard

The class name is displayed at the top and can be edited. For COM object classes, the list at the bottom of the dialog shows

5 Tools

134

the COM interfaces that the class will implement. For Automation interfaces, a type library must be chosen from the drop-
down list and one of the Coclass or Interfaces options selected to show the list of coclasses or interfaces that the class will
implement. Click OK to confirm your choice or Cancel to discard it.

5.2 The COM Object Browser

The COM Object Browser is used view COM objects for the classes implemented by Lisp. To start the tool, choose Tools >
Com Object Browser from the LispWorks podium.

COM Object Browser

The Active COM Objects list shows all the Lisp objects that are known to the COM runtime system. Selecting objects from
this list will list the COM interface pointers that have been queried for these objects. Double clicking on either list will
inspect the data. Use the Works > Object menu or the context menu to perform other operations on the selected COM
Objects.

5.3 The COM Interface Browser

The COM Interface Browser allows the interfaces that have been converted to FLI definitions to be viewed. To start the tool,
choose Tools > Com Interface Browser from the LispWorks podium.

5 Tools

135

COM Interface Browser

The left hand pane shows a tree of the interfaces, with subitems for their uuids and methods. Selecting an item will cause the
right-hand pane to show prototype code for invoking the method(s) selected.

5.4 Editor extensions

The LispWorks editor has been enhanced to support COM.

5.4.1 Inserting GUIDs

The editor command Insert GUID can be used to insert a new GUID at the current point. The GUID is made by calling
CoCreateGUID.

5.4.2 Argument lists

The editor command Function Arglist (Alt+=) has been extended to show the arguments for all COM methods which match
the function name.

5 Tools

136

6 Self-contained examples

This chapter enumerates the set of examples in the LispWorks library relevant to the content of this manual. Each example
file contains complete, self-contained code and detailed comments, which include one or more entry points near the start of
the file which you can run to start the program.

To run the example code:

1. Open the file in the Editor tool in the LispWorks IDE. Evaluating the call to example-edit-file shown below will
achieve this.

2. In some cases you can simply compile the example code, by Ctrl+Shift+B, and then place the cursor at the end of the
entry point form and press Ctrl+X Ctrl+E to run it. However the comments near the start of the file may have specific
instructions, such as how to build a delivered executable or library, so follow these if present.

6.1 Argument passing

These files comprise an example illustrating various argument passing issues when calling and implementing COM methods.
To run the example, follow the instructions in defsys.lisp.

(example-edit-file "com/manual/args/defsys")

(example-edit-file "com/manual/args/args.idl")

(example-edit-file "com/manual/args/args-impl")

(example-edit-file "com/manual/args/args-calling")

6.2 Aggregation

These three files contain a simple demonstration of implementing aggregation:

(example-edit-file "com/com/aggregation-defsys")

(example-edit-file "com/com/aggregation-idl.idl")

(example-edit-file "com/com/aggregation")

6.3 OLE embedding of external components

These examples illustrate OLE embedding of external components in a CAPI interface:

(example-edit-file "com/ole/html-viewer")

(example-edit-file "com/ole/flash-player")

137

6.4 Building an ActiveX control

These three files together comprise an example which illustrates building an ActiveX control. Start by reading the comments
in the first file:

(example-edit-file "com/ole/control-implementation/deliver")

(example-edit-file "com/ole/control-implementation/defsys")

(example-edit-file
 "com/ole/control-implementation/my-control-implementation")

This file shows how you can embed the new ActiveX control in another application:

(example-edit-file
 "com/ole/control-implementation/lisp-container")

6.5 OLE automation

These examples illustrate using OLE automation:

(example-edit-file "com/automation/internet-explorer/simple")

(example-edit-file "com/automation/excel/pie-chart")

This is a simple example of an Automation collection interface. Follow the instructions in defsys.lisp:

(example-edit-file "com/automation/collections/defsys")

(example-edit-file
 "com/automation/collections/collection-test.idl")

(example-edit-file "com/automation/collections/client")

(example-edit-file "com/automation/collections/server")

(example-edit-file "com/automation/collections/compile-tlb")

This is an example of building and testing a CAPI application that can be controlled by Automation. Start with readme.txt:

(example-edit-file "com/automation/capi-application/readme.txt")

(example-edit-file "com/automation/capi-application/build")

(example-edit-file "com/automation/capi-application/defsys")

(example-edit-file "com/automation/capi-application/listapp.idl")

(example-edit-file "com/automation/capi-application/listapp.tlb")

6 Self-contained examples

138

(example-edit-file "com/automation/capi-application/automation")

(example-edit-file "com/automation/capi-application/application")

(example-edit-file "com/automation/capi-application/test")

These two files illustrate use of the CrystalDesignRunTime component:

(example-edit-file "com/automation/crystal-reports/deliver")

(example-edit-file "com/automation/crystal-reports/aubrowse")

This example illustrates using events with Internet Explorer:

(example-edit-file "com/automation/events/ie-events")

This is an example of building an Automation server without a GUI.

(example-edit-file "com/automation/cl-smtp/clsmtp-impl-build")

(example-edit-file "com/automation/cl-smtp/clsmtp.idl")

(example-edit-file "com/automation/cl-smtp/clsmtp.tlb")

(example-edit-file "com/automation/cl-smtp/clsmtp-impl")

(example-edit-file "com/automation/cl-smtp/server")

(example-edit-file "com/automation/cl-smtp/clsmtp-test")

6 Self-contained examples

139

Index

A

accessors

interface-ref 54

lisp-variant-type lisp-variant 114

lisp-variant-value lisp-variant 114

simple-i-dispatch-invoke-callback simple-i-dispatch 125

ActiveX controls preface 8

add-ref function 27 1.6 : Reference counting 12

automation-server-command-line-action function 28

automation-server-main function 28

automation-server-top-loop function 30

C

call-com-interface macro 31 1.8 : Calling COM interface methods 12

call-com-object macro 32 1.9.2 : The lifecycle of a COM object 19, 1.10 : Calling COM object methods from Lisp 24

call-dispatch-get-property macro 87

call-dispatch-method macro 88

call-dispatch-put-property macro 89

Calling

Automation methods: using a type library 3.3.1 : Calling Automation methods using a type library 81

Automation methods: without using a type library 3.3.2 : Calling Automation methods without a type library 81

COM interface methods 1.8 : Calling COM interface methods 12

COM object methods 1.10 : Calling COM object methods from Lisp 24

check-hresult macro 34

classes

com-object 38

simple-i-dispatch 125

standard-automation-collection 127

standard-i-connection-point-container 128

standard-i-dispatch 129

standard-i-unknown 71

class factories 1.9.3 : Class factories 20

class options

:coclass define-automation-component 97

:coclass-reusable-p define-automation-component 97

:dont-implement define-com-implementation 47

140

:extra-interfaces define-automation-component 97

:inherit-from define-com-implementation 46

:interface define-automation-collection 96

:interfaces define-com-implementation 46, define-automation-component 97

:item-method define-automation-collection 96

:source-interfaces define-automation-component 97

:coclass class option define-automation-component 97

:coclass-reusable-p class option define-automation-component 97

co-create-guid function 34

co-initialize function 35 1.9.1 : Steps required to implement COM interfaces 18

collections

implementing 3.4.3 : Implementing collections 85

using 3.3.4 : Using collections 83

com-dispatch-invoke-exception-error condition class 90

com-dispatch-invoke-exception-error-info function 91

com-error condition class 36

com-error-function-name function com-error 36

com-error-hresult function com-error 36

com-interface system class 37 1.8 : Calling COM interface methods 12, 3.3.1 : Calling Automation methods using a type
library 81, 3.3.2 : Calling Automation methods without a type library 82

com-interface-refguid function 38

COM interface types

i-dispatch 108

i-unknown 55

com-object class 38

com-object-destructor generic function 39 1.9.2 : The lifecycle of a COM object 19

com-object-dispinterface-invoke generic function 92

com-object-from-pointer function 40

com-object-initialize generic function 41 1.9.2 : The lifecycle of a COM object 19

com-object-query-interface generic function 41

compiling IDL files 1.1 : Prerequisites 10

condition classes

com-dispatch-invoke-exception-error 90

com-error 36

connection points

implementing 3.4.4 : Implementing connection points 85

using 3.3.5 : Using connection points 83

CoTaskMemAlloc co-task-mem-alloc 43

co-task-mem-alloc function 42 1.8.1.3 : In-out parameters 16

CoTaskMemFree co-task-mem-free 44

Index

141

co-task-mem-free function 43 1.8.1.2 : Out parameters 14, 1.8.1.3 : In-out parameters 16

co-uninitialize function 44

:count-function initarg standard-automation-collection 127

create-instance function 45

create-instance-with-events function 93

create-object function 94

D

:data-function initarg standard-automation-collection 127

define-automation-collection macro 95

define-automation-component macro 96

define-com-implementation macro 46 1.9.1 : Steps required to implement COM interfaces 18

define-com-method macro 48 1.9.1 : Steps required to implement COM interfaces 18

define-dispinterface-method macro 98

defsystem member types

:midl-file 60 1.2.2 : Generating FLI definitions from COM definitions 10

:midl-type-library-file 116 3.1.2 : Generating FLI definitions from COM definitions 80

deliver function 1.2.4 : Making a COM DLL with LispWorks 11, automation-server-main 30, automation-server-top
-loop 31

destruction 1.9.2 : The lifecycle of a COM object 19

discard-connection function do-connections 102

disconnect-standard-sink function 100

dispinterface 3.1.3 : Reducing the size of the converted library 80, 3.4.1 : A complete implementation of an Automation server 84, 3.4.2 : A
simple implementation of a single Automation interface 84, com-object-dispinterface-invoke 92, define-
dispinterface-method 98

:dll-exports delivery keyword 1.2.4 : Making a COM DLL with LispWorks 11, set-register-server-error-reporter 69

do-collection-items macro 100

do-connections macro 101

:dont-implement class option define-com-implementation 47

dual interface 3.1.3 : Reducing the size of the converted library 80, 3.4.1 : A complete implementation of an Automation server 84

E

editor commands

Function Arglist 5.4.2 : Argument lists 136

Insert GUID 5.4.1 : Inserting GUIDs 136

environment variables

INCLUDE midl 58, midl-set-import-paths 60

errors

handling in Automation 3.3.6 : Error handling 83

handling in COM 1.8.2 : Error handling 17

reporting 3.4.5 : Reporting errors 85

events

see connection-points 3.4.4 : Implementing connection points 85

Index

142

:extra-interfaces class option define-automation-component 97

F

find-clsid function 49

find-component-tlb function 102

find-component-value function 103

FLI type descriptors

hresult 53

refguid 63

refiid 64

Function Arglist editor command 5.4.2 : Argument lists 136

:function-name initarg com-error 36

functions

add-ref 27

automation-server-command-line-action 28

automation-server-main 28

automation-server-top-loop 30

co-create-guid 34

co-initialize 35 1.9.1 : Steps required to implement COM interfaces 18

com-dispatch-invoke-exception-error-info 91

com-error-function-name com-error 36

com-error-hresult com-error 36

com-interface-refguid 38

com-object-from-pointer 40

co-task-mem-alloc 42 1.8.1.3 : In-out parameters 16

co-task-mem-free 43 1.8.1.2 : Out parameters 14, 1.8.1.3 : In-out parameters 16

co-uninitialize 44

create-instance 45

create-instance-with-events 93

create-object 94

discard-connection do-connections 102

disconnect-standard-sink 100

find-clsid 49

find-component-tlb 102

find-component-value 103

get-active-object 105

get-error-info 106

get-i-dispatch-name 107

get-i-dispatch-source-names 108

get-object 50

guid-equal 51

guid-to-string 52

Index

143

hresult-equal 53

interface-connect 109

interface-disconnect 110

invoke-dispatch-get-property 111

invoke-dispatch-method 112

invoke-dispatch-put-property 113

make-factory-entry 55 1.9.1 : Steps required to implement COM interfaces 18, 1.9.3 : Class factories 20

make-guid-from-string 56

make-lisp-variant 115

midl 57 1.2.2 : Generating FLI definitions from COM definitions 10

midl-default-import-paths 59

midl-set-import-paths 60

print-i-dispatch-methods 117

query-interface 61

query-simple-i-dispatch-interface 118

refguid-interface-name 63

register-active-object 119

register-class-factory-entry 65 1.9.1 : Steps required to implement COM interfaces 18, 1.9.3 : Class factories 20

register-server 66

release 67

revoke-active-object 120

server-can-exit-p 67

server-in-use-p 67

set-automation-server-exit-delay 68

set-error-info 120

set-i-dispatch-event-handler 121

set-register-server-error-reporter 69

set-variant 123

simple-i-dispatch-interface-name simple-i-dispatch 125

simple-i-dispatch-refguid simple-i-dispatch 125

start-factories 72 1.9.1 : Steps required to implement COM interfaces 18, 1.9.3 : Class factories 20

stop-factories 72

unregister-server 74

G

Garbage collection 1.9.2 : The lifecycle of a COM object 19

generic functions

com-object-destructor 39 1.9.2 : The lifecycle of a COM object 19

com-object-dispinterface-invoke 92

com-object-initialize 41 1.9.2 : The lifecycle of a COM object 19

com-object-query-interface 41

simple-i-dispatch-callback-object 126

Index

144

get-active-object function 105

get-error-info function 106 1.8.2 : Error handling 17

get-i-dispatch-name function 107

get-i-dispatch-source-names function 108

get-object function 50

guid-equal function 51

guid-to-string function 52

H

hresult FLI type descriptor 53

:hresult initarg com-error 36

hresult-equal function 53

I

i-dispatch COM interface type 108

IDL

compiling 1.1 : Prerequisites 10

iid_is attribute 1.8.1.2 : Out parameters 15

INCLUDE environment variable midl 58, midl-set-import-paths 60

inheritance 1.9.5 : Inheritance 20

:inherit-from class option define-com-implementation 46

initialization

CLOS object 1.9.2 : The lifecycle of a COM object 19

COM object 1.9.2 : The lifecycle of a COM object 19

in-out parameters 1.8.1.3 : In-out parameters 16, 1.9.6.4 : In-out parameters 24, 1.10.1.3 : In-out parameters 25, 3.3.3 : Data
conversion when calling Automation methods 82

in parameters 1.8.1.1 : In parameters 13, 1.9.6.2 : In parameters 23, 1.10.1.1 : In parameters 25, 3.3.3 : Data conversion when calling
Automation methods 82

Insert GUID editor command 5.4.1 : Inserting GUIDs 136

:interface class option define-automation-collection 96

interface-connect function 109

interface-disconnect function 110

:interface-name initarg simple-i-dispatch 125

interface-ref accessor 54

:interfaces class option define-com-implementation 46, define-automation-component 97

:invoke-callback initarg simple-i-dispatch 125

invoke-dispatch-get-property function 111

invoke-dispatch-method function 112

invoke-dispatch-put-property function 113

:item-generator-function initarg standard-automation-collection 127

:item-lookup-function initarg standard-automation-collection 127

:item-method class option define-automation-collection 96

Index

145

:items-function initarg standard-automation-collection 127

i-unknown COM interface type 55

L

lisp-variant system class 114

lisp-variant-type accessor lisp-variant 114

lisp-variant-value accessor lisp-variant 114

M

macros

call-com-interface 31

call-com-object 32 1.9.2 : The lifecycle of a COM object 19

call-dispatch-get-property 87

call-dispatch-method 88

call-dispatch-put-property 89

check-hresult 34

define-automation-collection 95

define-automation-component 96

define-com-implementation 46 1.9.1 : Steps required to implement COM interfaces 18

define-com-method 48 1.9.1 : Steps required to implement COM interfaces 18

define-dispinterface-method 98

do-collection-items 100

do-connections 101

query-object-interface 62 1.9.2 : The lifecycle of a COM object 19

s_ok 70

succeeded 73

with-coclass 130

with-com-interface 75

with-com-object 76

with-dispatch-interface 131

with-query-interface 77

with-temp-interface 78

make-factory-entry function 55 1.9.1 : Steps required to implement COM interfaces 18, 1.9.3 : Class factories 20

make-guid-from-string function 56

make-lisp-variant function 115

making a COM DLL 1.2.4 : Making a COM DLL with LispWorks 11

midl function 57 1.2.2 : Generating FLI definitions from COM definitions 10

midl-default-import-paths function 59

midl.exe 1.2.2 : Generating FLI definitions from COM definitions 10, 1.8.1 : Data conversion when calling COM methods 13, 1.9.6 :
Data conversion in define-com-method 22

:midl-file defsystem member type 60 1.2.2 : Generating FLI definitions from COM definitions 10

midl-set-import-paths function 60

Index

146

:midl-type-library-file defsystem member type 116 3.1.2 : Generating FLI definitions from COM definitions 80

modules

automation 3.1.1 : Loading the modules 80

com 1.2.1 : Loading the modules 10, 3.1.1 : Loading the modules 80

N

name mapping 1.3 : The mapping from COM names to Lisp symbols 11

New in LispWorks 7.0

midl-default-import-paths function 59

midl-set-import-paths function 60

Optional Automation parameters can be passed as :not-specified 3.3.3 : Data conversion when calling Automation methods 82

print-i-dispatch-methods function 117

Search paths for IDL import statements midl 58

set-register-server-error-reporter function 69

New in LispWorks 7.1

vararg Automation parameters will be converted to an array 1.9.6.1 : FLI types 23, 3.3.3 : Data conversion when calling Automation
methods 82, define-dispinterface-method 99

Newly documented in LispWorks 7.0

:type-library class option for define-automation-component define-automation-component 98

O

OLE preface 8

other applications

registering objects for 3.4.6 : Registering a running object for use by other applications 85

:outer-unknown initarg standard-i-unknown 71

out parameters 1.8.1.2 : Out parameters 14, 1.9.6.3 : Out parameters 23, 1.10.1.2 : Out parameters 25, 3.3.3 : Data conversion when
calling Automation methods 82

P

parameter direction

in 1.8.1.1 : In parameters 13, 1.9.6.2 : In parameters 23, 1.10.1.1 : In parameters 25, 3.3.3 : Data conversion when calling
Automation methods 82

in-out 1.8.1.3 : In-out parameters 16, 1.9.6.4 : In-out parameters 24, 1.10.1.3 : In-out parameters 25, 3.3.3 : Data conversion when
calling Automation methods 82

out 1.8.1.2 : Out parameters 14, 1.9.6.3 : Out parameters 23, 1.10.1.2 : Out parameters 25, 3.3.3 : Data conversion when calling
Automation methods 82

Primitive types 1.8.1 : Data conversion when calling COM methods 13, 1.9.6.1 : FLI types 22

print-i-dispatch-methods function 117

propget attribute 1.3 : The mapping from COM names to Lisp symbols 11

propgput attribute 1.3 : The mapping from COM names to Lisp symbols 11

propgputref attribute 1.3 : The mapping from COM names to Lisp symbols 11

Q

query-interface function 61 1.7 : Querying for other COM interface pointers 12

Index

147

query-object-interface macro 62 1.9.2 : The lifecycle of a COM object 19

query-simple-i-dispatch-interface function 118

:quit-when-no-windows delivery keyword automation-server-top-loop 31

R

refguid FLI type descriptor 63

refguid-interface-name function 63

refiid FLI type descriptor 64 1.7 : Querying for other COM interface pointers 12

register-active-object function 119

register-class-factory-entry function 65 1.9.1 : Steps required to implement COM interfaces 18, 1.9.3 : Class factories 20

register-server function 66

registry

component values find-component-value 103

guid find-clsid 49

ProgID find-clsid 49

type library versions find-component-tlb 102

release function 67 1.6 : Reference counting 12

retval attribute 3.3.3 : Data conversion when calling Automation methods 82

revoke-active-object function 120

S

save-image function 1.2.4 : Making a COM DLL with LispWorks 11, automation-server-main 30

Self-contained examples

ActiveX controls 6.4 : Building an ActiveX control 138

aggregation 6.2 : Aggregation 137

argument passing 6.1 : Argument passing 137

Automation 3.5 : Examples of using Automation 86

calling and implementing COM methods 6.1 : Argument passing 137

COM/Automation 6 : Self-contained examples 137, 6.4 : Building an ActiveX control 138

Controlling an Automation application 3.5 : Examples of using Automation 86

embedding external components 6.3 : OLE embedding of external components 137

event handlers 6.5 : OLE automation 139

events 6.5 : OLE automation 139

Getting events from COM interfaces 3.5 : Examples of using Automation 86

OLE automation 6.5 : OLE automation 138

OLE embedding 6.3 : OLE embedding of external components 137

server-can-exit-p function 67

server-in-use-p function 67

set-automation-server-exit-delay function 68

set-error-info function 120 define-com-method 49, 3.4.5 : Reporting errors 85

set-i-dispatch-event-handler function 121

set-register-server-error-reporter function 69

Index

148

set-variant function 123

simple-i-dispatch class 125

simple-i-dispatch-callback-object generic function 126

simple-i-dispatch-interface-name function simple-i-dispatch 125

simple-i-dispatch-invoke-callback accessor simple-i-dispatch 125

simple-i-dispatch-refguid function simple-i-dispatch 125

size_is attribute 1.8.1.1 : In parameters 13, 1.8.1.2 : Out parameters 15, 1.8.1.3 : In-out parameters 16, 1.9.6.2 : In
parameters 23, 1.9.6.3 : Out parameters 23, 1.9.6.4 : In-out parameters 24, 1.10.1.1 : In parameters 25, 1.10.1.2 : Out
parameters 25, 1.10.1.3 : In-out parameters 25

s_ok macro 70

source attribute define-automation-component 97

source interfaces 3.4.4 : Implementing connection points 85

:source-interfaces class option define-automation-component 97

standard-automation-collection class 127

standard-i-connection-point-container class 128

standard-i-dispatch class 129

standard-i-unknown class 71

start-factories function 72 1.9.1 : Steps required to implement COM interfaces 18, 1.9.3 : Class factories 20

stop-factories function 72

string attribute 1.8.1.1 : In parameters 13, 1.8.1.2 : Out parameters 14, 1.8.1.3 : In-out parameters 16, 1.9.6.2 : In
parameters 23, 1.9.6.3 : Out parameters 23, 1.9.6.4 : In-out parameters 24, 1.10.1.1 : In parameters 25, 1.10.1.3 : In-out
parameters 25

succeeded macro 73

system classes

com-interface 37 1.8 : Calling COM interface methods 12, 3.3.1 : Calling Automation methods using a type library 81, 3.3.2 :
Calling Automation methods without a type library 82

lisp-variant 114

T

tools

COM Implementation Browser 5.1 : The COM Implementation Browser 133

COM Interface Browser 5.3 : The COM Interface Browser 135

COM Object Browser 5.2 : The COM Object Browser 135

type libraries 3.1.2 : Generating FLI definitions from COM definitions 80

U

unimplemented methods 1.9.4 : Unimplemented methods 20

unregister-server function 74

V

vararg attribute 1.9.6.1 : FLI types 23, 3.3.3 : Data conversion when calling Automation methods 82, define-dispinterface-
method 99

Index

149

W

Windows registry find-clsid 49, find-component-tlb 102, find-component-value 103

with-coclass macro 130

with-com-interface macro 75 1.8 : Calling COM interface methods 12

with-com-object macro 76 1.10 : Calling COM object methods from Lisp 24

with-dispatch-interface macro 131

with-query-interface macro 77 1.7 : Querying for other COM interface pointers 12

with-temp-interface macro 78 1.6 : Reference counting 12

Index

150

	COM/Automation User Guide and Reference Manual
	Copyrights and Trademarks
	Contents
	Preface
	1 Using COM
	1.1 Prerequisites
	1.2 Including COM in a Lisp application
	1.2.1 Loading the modules
	1.2.2 Generating FLI definitions from COM definitions
	1.2.3 Standard IDL files
	1.2.4 Making a COM DLL with LispWorks

	1.3 The mapping from COM names to Lisp symbols
	1.4 Initializing the COM runtime
	1.5 Obtaining the first COM interface pointer
	1.6 Reference counting
	1.7 Querying for other COM interface pointers
	1.8 Calling COM interface methods
	1.8.1 Data conversion when calling COM methods
	1.8.1.1 In parameters
	1.8.1.2 Out parameters
	1.8.1.3 In-out parameters

	1.8.2 Error handling

	1.9 Implementing COM interfaces in Lisp
	1.9.1 Steps required to implement COM interfaces
	1.9.2 The lifecycle of a COM object
	1.9.3 Class factories
	1.9.4 Unimplemented methods
	1.9.5 Inheritance
	1.9.5.1 An example of multiple inheritance
	1.9.5.2 A second example of multiple inheritance

	1.9.6 Data conversion in define-com-method
	1.9.6.1 FLI types
	1.9.6.2 In parameters
	1.9.6.3 Out parameters
	1.9.6.4 In-out parameters

	1.10 Calling COM object methods from Lisp
	1.10.1 Data conversion when calling COM object methods
	1.10.1.1 In parameters
	1.10.1.2 Out parameters
	1.10.1.3 In-out parameters

	2 COM Reference Entries
	add-ref
	automation-server-command-line-action
	automation-server-main
	automation-server-top-loop
	call-com-interface
	call-com-object
	check-hresult
	co-create-guid
	co-initialize
	com-error
	com-interface
	com-interface-refguid
	com-object
	com-object-destructor
	com-object-from-pointer
	com-object-initialize
	com-object-query-interface
	co-task-mem-alloc
	co-task-mem-free
	co-uninitialize
	create-instance
	define-com-implementation
	define-com-method
	find-clsid
	get-object
	guid-equal
	guid-to-string
	hresult
	hresult-equal
	interface-ref
	i-unknown
	make-factory-entry
	make-guid-from-string
	midl
	midl-default-import-paths
	:midl-file
	midl-set-import-paths
	query-interface
	query-object-interface
	refguid
	refguid-interface-name
	refiid
	register-class-factory-entry
	register-server
	release
	server-can-exit-p
	server-in-use-p
	set-automation-server-exit-delay
	set-register-server-error-reporter
	s_ok
	standard-i-unknown
	start-factories
	stop-factories
	succeeded
	unregister-server
	with-com-interface
	with-com-object
	with-query-interface
	with-temp-interface

	3 Using Automation
	3.1 Including Automation in a Lisp application
	3.1.1 Loading the modules
	3.1.2 Generating FLI definitions from COM definitions
	3.1.3 Reducing the size of the converted library

	3.2 Starting a remote Automation server
	3.3 Calling Automation methods
	3.3.1 Calling Automation methods using a type library
	3.3.2 Calling Automation methods without a type library
	3.3.3 Data conversion when calling Automation methods
	3.3.4 Using collections
	3.3.5 Using connection points
	3.3.6 Error handling

	3.4 Implementing Automation interfaces in Lisp
	3.4.1 A complete implementation of an Automation server
	3.4.2 A simple implementation of a single Automation interface
	3.4.3 Implementing collections
	3.4.4 Implementing connection points
	3.4.5 Reporting errors
	3.4.6 Registering a running object for use by other applications
	3.4.7 Automation of a CAPI application

	3.5 Examples of using Automation

	4 Automation Reference Entries
	call-dispatch-get-property
	call-dispatch-method
	call-dispatch-put-property
	com-dispatch-invoke-exception-error
	com-dispatch-invoke-exception-error-info
	com-object-dispinterface-invoke
	create-instance-with-events
	create-object
	define-automation-collection
	define-automation-component
	define-dispinterface-method
	disconnect-standard-sink
	do-collection-items
	do-connections
	find-component-tlb
	find-component-value
	get-active-object
	get-error-info
	get-i-dispatch-name
	get-i-dispatch-source-names
	i-dispatch
	interface-connect
	interface-disconnect
	invoke-dispatch-get-property
	invoke-dispatch-method
	invoke-dispatch-put-property
	lisp-variant
	make-lisp-variant
	:midl-type-library-file
	print-i-dispatch-methods
	query-simple-i-dispatch-interface
	register-active-object
	revoke-active-object
	set-error-info
	set-i-dispatch-event-handler
	set-variant
	simple-i-dispatch
	simple-i-dispatch-callback-object
	standard-automation-collection
	standard-i-connection-point-container
	standard-i-dispatch
	with-coclass
	with-dispatch-interface

	5 Tools
	5.1 The COM Implementation Browser
	5.2 The COM Object Browser
	5.3 The COM Interface Browser
	5.4 Editor extensions
	5.4.1 Inserting GUIDs
	5.4.2 Argument lists

	6 Self-contained examples
	6.1 Argument passing
	6.2 Aggregation
	6.3 OLE embedding of external components
	6.4 Building an ActiveX control
	6.5 OLE automation

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

