
Implementing Symmetric 
Multiprocessing in LispWorks

Making a multithreaded application 
more multithreaded

Martin Simmons, LispWorks Ltd

Copyright © 2009 LispWorks Ltd

Martin Simmons, LispWorks Ltd, ECLM 2009



Outline

• Introduction

• Changes in LispWorks

• Application requirements

• Future work

Martin Simmons, LispWorks Ltd, ECLM 2009



Why SMP?

• Demand from customers

and also

• Makes better use of modern hardware

• Multi-core hardware readily available

• Fun!

Martin Simmons, LispWorks Ltd, ECLM 2009



Roadmap

Multiprocessing models in LispWorks

Green threads Native threads SMP

1987 1997 2009

LispWorks 2 & 3 LispWorks 4 & 5 LispWorks 6

Lisp scheduler 
implements 

threads

Lisp scheduler 
chooses thread for 

native scheduler

Native scheduler 
guided by Lisp 

scheduler

Martin Simmons, LispWorks Ltd, ECLM 2009



Changes in LispWorks

• Runtime system changes

– Change some global data to be per-thread
• Bindings, catch tags, current thread

– Compiler changes to access to per-thread data

– Garbage collector (addition of locking)

– FLI (removal of locking)

• Common Lisp implementation

• Extensions and libraries

Martin Simmons, LispWorks Ltd, ECLM 2009



Interaction of CL with SMP

• No formal specification for threads in CL

– Some consensus between implementations

• Thread-safety

• Atomicity

• Specify some semantics

– Goal is to remain the same as existing threading model

Martin Simmons, LispWorks Ltd, ECLM 2009



What does thread-safe mean?

• Safety in the implementation

– Avoids breaking the implementation

– Implicit locks

• Safety for applications

– We need to specify some semantics that can be 
guaranteed

Martin Simmons, LispWorks Ltd, ECLM 2009



Safety in the CL implementation

• Access to all standard CL objects is thread-safe

– Readers always return valid CL objects

– Does not imply useful semantics overall

• Immutable objects

– Numbers, characters, functions, pathnames and restarts

– Can be freely shared between threads

• Mutable objects

– Use with more than one thread needs to be controlled

– Atomic access possible in some cases

Martin Simmons, LispWorks Ltd, ECLM 2009



Atomic access

• Scenario:

– There is one object

– Several threads are reading and writing one of its slots

• The value of each read operation looks like

– Some write operations have finished

– But all other write operations have not started yet

• Not specified for multiple reads

– Same slot or different slots

Martin Simmons, LispWorks Ltd, ECLM 2009



Mutable objects: atomic access

• Access to conses, simple arrays, symbols and structures is atomic.
– Does not apply to non-simple arrays (compound objects)

• Slot access in objects of type standard-object is atomic with respect to
– modification of the slot
– class redefinition, but MOP semantics are problematic

• vector-pop, vector-push, vector-push-extend, (setf fill-pointer) and adjust-
array
– atomic with respect to each other and with respect to other access to the 

array elements

• Hash tables operations are atomic with respect to each other
– Making several calls to these functions will not be atomic overall
– New: modify-hash to atomically read and write an entry and with-hash-table-

locked for more complex operations

• Access to packages is atomic
– Though some scenarios are nonsensical

Martin Simmons, LispWorks Ltd, ECLM 2009



Mutable objects: non-atomic access

• Access to lists (including alists and plists) is not atomic

– Lists are made of multiple cons objects, so although access to the individual 
conses is atomic, the same does not hold for the list as a whole

• Sequence operations that access multiple elements are not atomic

– E.g. delete, find

• Macros that expand to multiple read/write operations are not atomic

– push, incf, rotatef etc

– Atomic versions of some of these are available in LispWorks 6

• Stream operations are in general not atomic

– Optional locking of streams at application granularity

Martin Simmons, LispWorks Ltd, ECLM 2009



New atomic operators

• Usable with a restricted set of Common Lisp places

• Primitives

– atomic-exchange

– compare-and-swap

– atomic-fixnum-incf

• High level

– atomic-push

– atomic-pop

– atomic-incf

Martin Simmons, LispWorks Ltd, ECLM 2009



Synchronization Objects

• Locks
– Simple and exclusive/sharing

• Mailboxes
– FIFO queues, use for communication between threads 

• Barriers
– Wait until fixed number of threads have synchronized

• Condition variables
– Used with a lock for a complex Lisp condition to control the scheduler

• Counting semaphores
– Traditional API to control number of concurrent uses of a resource

Martin Simmons, LispWorks Ltd, ECLM 2009



Native scheduler vs. Lisp scheduler

• Native scheduler uses synchronization objects

• Lisp scheduler uses an arbitrary predicate to control 
wake-up

• Syntax
process-wait reason predicate &rest args

• process-wait is still supported

– Using synchronization objects is usually better

– process-wait has some problems

Martin Simmons, LispWorks Ltd, ECLM 2009



Problems with process-wait

• It is unspecified which thread calls the predicate

– The dynamic environment is also unknown

• Thread-safety in the predicate is often assumed

• Lisp scheduler wake-up vs. native wake-up (timeout)

• Lifetime of the predicate

– May have dynamic extent data in the predicate

– But that will become invalid if native wake-up occurs

• Error handling and debugging is difficult

• Very easy for the scheduler to become a bottleneck

Martin Simmons, LispWorks Ltd, ECLM 2009



An alternative process-wait

• Retain the convenience of process-wait

– Distribute the work of the Lisp scheduler

– Same syntax and still has a Lisp predicate

• Comparison to process-wait

– The waiting thread calls the predicate when needed

– Call is triggered by calling process-poke process

– Or it can be called periodically

– Predicate lifetime and environment is well defined

– Errors and debugging no longer a problem

Martin Simmons, LispWorks Ltd, ECLM 2009



An alternative process-wait (cont)

• Working name is process-wait-local

• Syntax
process-wait-local reason predicate &rest args

• We don't like the name

– Can you suggest a better one?

• Could instead rename process-wait as
process-wait-using-scheduler

– Not quite correct for backward compatibility

Martin Simmons, LispWorks Ltd, ECLM 2009



Native GUI threading

• Used by the LispWorks IDE and CAPI applications

• Windows

– Threading is built-in

– Per thread event processing

• GTK+

– Threading via a global lock

– Per thread event processing can be simulated

• Cocoa

– One GUI thread

– No good way to simulate per thread events

Martin Simmons, LispWorks Ltd, ECLM 2009



Changes for applications

• Remove use of macros like without-preemption etc
– Works as an all-powerful lock, stopping the world

– Avoid like the (plague) swine flu

– Cannot be mixed reliably with other locks

• Use other threading primitives like atomic-push

• Atomic read-modify-write primitives like compare-and-swap

• More use of locks
– need a design to avoid deadlocks

– use sparingly to avoid contention

• Try to use process-wait-local rather than process-wait

• Use other synchronization objects

Martin Simmons, LispWorks Ltd, ECLM 2009



An application: the LispWorks IDE

• Already multithreaded

• Many changes to the editor

– Original design was single threaded

– Many types of interacting objects
• Buffer, window etc

– Programmatic and interactive

– Streams

Martin Simmons, LispWorks Ltd, ECLM 2009



Common conversion pitfalls

• Overuse of locks

• Deadlocks

• Avoiding locks by sleepy waiting or busy waiting

• Misuse of new atomic operations

Martin Simmons, LispWorks Ltd, ECLM 2009



Entertaining bug

• Goal is a pop/push resource for conses

• Atomic push:

A

N

B (loop

(let* ((tail *list*)

(head (cons N tail)))

(when (compare-and-swap

*list* tail head)

(return))))

*list* tail

head

AN B

*list* tailhead

(atomic-push N *list*)

Martin Simmons, LispWorks Ltd, ECLM 2009



Entertaining bug (cont)

• Atomic pop:

• Can we reuse the cons?

A

N

B (loop

(let* ((head *list*)

(tail (cdr head)))

(when (compare-and-swap

*list* head tail)

(return (car head)))))

*list* tail

head

AN B

*list*

(atomic-pop *list*) => N

Martin Simmons, LispWorks Ltd, ECLM 2009



Entertaining bug (cont)

• Atomic pop cons:

• Atomic push cons is similar

A

N

B (loop

(let* ((head *list*)

(tail (cdr head)))

(when (compare-and-swap

*list* head tail)

(return head))))

*list* tail

head

AN B

*list*

(atomic-pop-cons *list*) => (N)

Martin Simmons, LispWorks Ltd, ECLM 2009



Entertaining bug (cont)

Martin Simmons, LispWorks Ltd, ECLM 2009

AN B

*list* tailhead

A NB

*list* tail head

B

*list*

N B

tail

*list* head

A

tail

N

head

*list*

A

tail

A

(loop

(let* ((head *list*)

(tail (cdr head)))

(when (compare-and-swap

*list* head tail)

(return head))))



Most MP code can be ported easily

• Watch for code that was never thread-safe

– Much more likely to break in a SMP Lisp

• Customers should contact us for advice

Martin Simmons, LispWorks Ltd, ECLM 2009



What comes next

• LispWorks 6 beta

• Possible future work

– Multithreaded GC?

– Other threading primitives?

– Other paradigms such as transactional approaches

Martin Simmons, LispWorks Ltd, ECLM 2009



Summary

• Changes in LispWorks

– New atomic access model

– New primitives

– Performance comparable to current stable release

• Application changes

– Limited to interaction with threads

• Available in LispWorks 6

Martin Simmons, LispWorks Ltd, ECLM 2009


